Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    The @Anatomical Record 204 (1982), S. 175-183 
    ISSN: 0003-276X
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The distribution of fibronectin in normal and regenerating skeletal muscle (the latter caused by autotransplantation) was investigated by means of indirect immunofluorescent technique. Normal myofibers exhibited a thin, continuous pericellular (endomysium) fibronectin distribution; however, their sarcoplasm was devoid of fibronectin. After autotransplantation, the skeletal muscle fibers underwent a process of degeneration that was followed by regeneration from the premyogenic satellite cells. These cells multiplied, fused to form myotubes, and matured into new myofibers. A decrease and an eventual loss of endomysial fibronectin was seen in the degenerating myofibers. At the same time, fibronectin appeared in the sarcoplasm. No significant fibronectin was expressed in the myogenic zone until the formation of myotubes which possessed a complete, circular fibronectin ring. The sarcoplasm of the myotubes lacked fibronectin. Since fibronectin is a component of basement membrane of several tissues, its disappearance and reappearance can be used to follow the fate of basement membrane. We conclude that fibronectin may not be essential for early myogenesis and that regenerated myotubes form an entirely new or at least certain new molecular components of their basement membrane. The present muscle autotransplantation model can be used to further study the role of fibronectin during myogenesis and cell transformation in vivo.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    The @Anatomical Record 209 (1984), S. 21-27 
    ISSN: 0003-276X
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Extracellular matrix is known to play an important role during development and maintenance of various tissues. In the present study, changes in two extracellular matrix glycoproteins, fibronectin and laminin, were investigated in skeletal muscle undergoing immune rejection. Purified antibodies against fibronectin and laminin were used to analyze the matrix by indirect immunofluorescence at various intervals after transplantation of extensor digitorum longus muscle in rats. Fibronectin and laminin were localized in the pericellular basement membrane zone of the normal myofibers; however, the cytoplasm was devoid of both glycoproteins. Transplanted muscle grafts underwent a process of degeneration and then an initial regeneration during the first 7 days. This regeneration effort ceased with the onset of muscle rejection in 14-day transplants. At this time, fibronectin was seen in the cytoplasmic region as well as the extracellular matrix of myofibers and myotubes. At later time intervals, an increased intensity of staining for fibronectin was seen throughout the rejected muscle. In muscle grafts undergoing regeneration but not rejection (i.e., nonantigenic grafts), such an increase in the presence of fibronectin was not seen (Gulati et al., 1982). The distribution of laminin did not change during the rejection process and was localized in the basement membrane zone of myofibers and myotubes, although the overall configuration of the basement membranes was deformed and collapsed. It appears that the basement membranes are resistant to degradation, and staining for laminin persists in rejected muscle. These results show marked changes in the extracellular matrix of muscle undergoing rejection. The appearance of fibronectin during the initial stages of muscle rejection may have a causal relationship to the process of immune defence mechanism; however, the exact role of fibronectin remains elusive.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 56 (1994), S. 192-195 
    ISSN: 0730-2312
    Keywords: bmne ; cartilage ; BMPs ; PDGF ; TGF-β ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The three ingredients for the successful tissue engineeping of bone and cartilage are ragulatory signals, cells and extracellular matrix. Recent advance in cellular and molecular biology of thde growth and differentiation factors have set the stage for a symbiosis of biotechnology and biomaterials. Recent advances permit one to enunciate the rules of architechure for tissue engineering of bone and cartilage. The purification and cloning of bone morphogenetic proteins (BMPs) and growth factors such as platelet derived growth factors (PDGF), tranforming growth factor-β (TGF-β), and insulin-like growth factors (IGF-I) Will allow the design of an optimal combinatiol of signals to initiate and promote development of skeletal stem cells into cartilage and bone. Successful and optimal bone and motion. BMPs function as inductive signals. Biomaterials (Both natural and synthetic) mimic the extracellular matrix and play a role in conduction of bone and cartiage. Examples of biomaterials include hydroxyapatite, polyanhydrides, polyphosphoesters, polylactic acid, and polyglycolic acid. The prospects for novel biomaterials are immense, and they likely will be a fertile erowth industpy. Cooperative ventures between academia and industry and teahnology transfer from the federal government augur well for an exciting future fop clinical applications.
    Additional Material: 1 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 19 (1985), S. 233-239 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: The sequential cellular reactions in the interface of collagenous bone matrix implants are described. The multistep cascade in response to bone matrix implantation include: binding of fibrin and fibronectin to the implanted matrix, chemotaxis of cells, proliferation of fibroblasts, differentiation into chondroblasts, cartilage formation, vascular invasion, bone formation, remodeling, and bone marrow differentiation. The mechanism of action is not known. However, several properties governing the implantcell interface are described. It is possible that bone matrix is a suitable biomaterial with potential applications in periodontal and orthopedic practice.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 27 (1993), S. 239-245 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: The objective of this study was to determine whether demineralized rat incisor matrices were a more potent inducer of ectopic endochondral bone formation than demineralized diaphyseal bone matrices derived from the same donors. Twenty-five-milligram disks of demineralized bone or tooth matrix obtained from adolescent Long-Evans rats were implanted in a standardized ectopic site. Biochemical and histometric measurements of bone formation revealed that the two matrices were functionally equivalent inducers of endochondral bone formation. The induced pellicle of bone reached a maturation point 18 days after implantation. Dentin matrix implants generated a significantly greater amount of mineralized tissue than did bone matrix implants. This difference could be explained on the basis of remineralization of the dentin particles to a greater degree than the bone matrix particles. Initial observations suggesting a more robust osteoinductive activity in demineralized incisor matrix can be attributed to the decreasing activity of bone matrix from older donors when compared to younger donors. The extent of osteoinduction by the two substrata was equivalent when the matrices were matched for age. © 1993 John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    BioEssays 13 (1991), S. 403-408 
    ISSN: 0265-9247
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Endochondral bone formation can take place in the embryo, during fracture healing, or in postnatal animals after induction by implanted demineralized bone matrix. This matrix-induced bone formation recapitulates the embryonic sequence of bone formation morphologically and biochemically. The steps in bone formation in both systems include differentiation of cartilage from mesenchyme, cartilage maturation, invasion of the cartilage by blood vessels and marrow precursors, and formation of bone and bone marrow. Recently, bone inductive molecules from demineralized bone matrix have been purified, sequenced and produced as recombinant proteins. While there are similarities between bone development in the embryo and that after induction by these purified molecules, the molecules responsible for bone induction in the embryo have not yet been defined. Because of similarities between the two methods of bone formation, studies of Bone induction by demineralized bone matrix may help to elucidate mechanisms of embryonic bone induction.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...