Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1058-8388
    Keywords: Muscle differentiation ; Fetal mouse hindlimb ; Gene expression ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The modulation of contractile protein gene expression in mouse crural muscles (i.e., muscles located in the region between the knee and ankle) during the fetal period (defined as 15 days gestation to birth), resulting in diversity among and within these muscles, has been evaluated with in situ hybridization and correlated with morphogenetic events in the extensor digitorum longus and soleus muscles. During the fetal period extensive secondary myotube formation occurs in the crural muscles, and the myotubes become innervated (Ontell and Kozeka [1984a, b] Am. J. Anat. 171:133-148, 149-161; Ontell et al. [1988a, b] Am. J. Anat. 181:267-278, 181:278-288). At 15 days gestation, hybridization with 35S-labeled antisense cRNA probes demonstrates the accumulation of transcripts forα-cardiac andα-skeletal actin; MLC1A, MLC1F, and MLC3F; and MHCemb, MHCpn, and MHCβ/slow. At 16 days gestation, accumulation of MHCemb transcripts is reduced (as compared with earlier developmental stages); intensity of signal following hybridization with the probe forα-skeletal actin is, for the first time, equal to that for the cardiac isoform; and MLC1V mRNA accumulation is discernible. At this stage, variation in transcript accumulation for some mRNAs among and within crural muscles becomes evident. Two factors may play a role in the selective distribution of these transcripts: (1) the stage of muscle maturation; and (2) the future myofiber type. At 16 days gestation anterior crural muscles (which mature ˜ 2 days before posterior crural muscles; Ontell and Kozeka [1984a, b], ibid., Ontell et al. [1988a, b], ibid.) exhibit a greater accumulation of transcripts forα-skeletal actin and for MLC3F than is found in posterior crural muscles. In muscles that in the neonate are composed, in large part, of slow myofibers, MHCβ/slow and MLC1V mRNAs accumulate in greater amounts, whereas MHCpn transcripts are less abundant in the soleus muscle than in other crural muscles. By 19 days gestation regionalization of transcript accumulation is more pronounced. The soleus muscle, a predominantly slow twitch muscle in the newborn mouse (Wirtz et al. [1983] J. Anat. 137:109-126) exhibits strong signal after hybridization with probes specific for MHCβ/slow and MLC1V. While the level of transcript accumulation for the developmetal isoforms, MHCemb, MLC1A, andα-cardiac actin, is greatly reduced in most crural muscles at 19 days gestation, these transcripts persist in the soleus muscle at levels equal to or exceeding their amount in limb muscles of 13 day gestation mouse embryos. By 19 days gestation both MyoD and myogenin are “down-regulated” (as compared with their expression at earlier developmental stages) in all muscle masses. Alterations in contractile protein gene expression are correlated with changes in the myogenic regulatory factors present in fetal hindlimbs during development. © 1993 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Microscopy Research and Technique 30 (1995), S. 354-365 
    ISSN: 1059-910X
    Keywords: Hindlimbs ; Myotomes ; Actin ; Myosin ; Myogenic regulatory factors ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Natural Sciences in General
    Notes: Over the past decade, significant advances in molecular biological techniques have substantially increased our understanding of in vivo myogenesis, supplementing the information that previously had been obtained from classical embryological and morphological studies of muscle development. In this review, we have attempted to correlate morphogenetic events in developing murine muscle with the expression of genes encoding the MyoD family of myogenic regulatory factors and the contractile proteins. Differences in the pattern of expression of these genes in murine myotomal and limb muscle are discussed in the context of muscle cell lineage and environmetal factors. The differences in gene expression in these two types of muscle suggest that no single coordinated pattern of gene activation is required during the initial formation of the muscles of the mouse. © 1995 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 39 (1989), S. 285-292 
    ISSN: 0730-2312
    Keywords: epithelial cells ; putative growth factor ; regression sequence ; androgen-independent epithelial cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: A series of rapidly dividing epithelial (RDE) cell lines have been isolated from primary cultures of rat ventral prostate (RVP) epithelial cells. Unlike androgen-dependent secretory epithelial cells, the RDE cells in culture do not express the androgen-dependent secretory proteins, nor do they express the androgen-repressed cell death sequences (TRPM-2) found in the epithelial cells during prostatic regression. Screening of a cDNA clone library established from RDE cell mRNA has yielded a number of RDE cell-specific sequences. One of these, RDE-.25 is a 250-base mRNA. The sequence of RDE-.25 shows considerable homology with the rat growth hormone gene and two murine oncogene sequences. We believe that the absence of androgen-repressed cell death sequence expression confers androgen independence for survival and growth, while the expression of RDE-.25 may represent an autocrine growth stimulus which greatly increases the rate of cell division in these cells.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 48 (1992), S. 141-149 
    ISSN: 0730-2312
    Keywords: laminin ; structure-function ; adhesion ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Mouse PFHR9 laminin, B1B2-heterodimers, and free B1-chains were separated from one another by gel filtration on superose 6. The cell attachment promoting activity of these species was measured after immunoprecipitation with monoclonal anti-laminin antibodies coupled to Sepharose 6MB beads. These antibodies, Which did not react with the laminin E8 fragment, were directed against epitopes in the NH2-terminus of the laminin B1-chain and in the central region of laminin. After incubation with purified EHS laminin, the immunosorbents revealed efficient adhesion substrates for a rat rhabdomyosarcoma cell line which attached preferentially to the laminin E8 fragment. Although both were immunoprecipitated efficiently, B1B2-heterodimers and B1-chains, unlike PFHR9 laminin, did not support the attachment of RMS cells. On a molar basis B1B2-heterodimers were 24 times less efficient than PFHR9 laminin or EHS laminin in supporting cell attachment. These data suggest that heterotrimeric configuration is essential to the adhesive function of the laminin E8 fragment.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...