Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Life and Medical Sciences  (1)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 143 (1990), S. 118-128 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Cytoskeletal abnormalities occurring during oxidative stress generated by the metabolism of the redox cycling compound 2-methyl-1,4-naphtoquinone (menadione) have been investigated in different mammalian cells in culture. Extraction of the whole cytoskeleton as well as the intermediate filament- and the microtubule-enriched fractions from menadione-treated cells revealed a marked depletion of protein sulfhydryl groups. The analysis of the whole cytoskeletal fraction by PAGE showed a menadione-dependent and thiol-sensitive oxidation of actin, leading to the formation of high-molecular-weight aggregates. In addition, the extraction of this fraction with high concentrations of KCl entailed only a partial solubilization of actin. The comparative cytochemical analysis performed on treated cells showed a menadione-dependent clustering of actin microfilaments. The metabolism of menadione induced microtubule depolymerization and inhibition of GTP-induced microtubule assembly from soluble cytosolic components. The latter phenomenon was prevented by previously treating the cytosolic fraction with thiol reductants such as dithiothreitol. Menadione increased the protein content of the intermediate-size filament fraction, partially purified by one or more cycles of disassembly/assembly, and particularly enriched in polypeptides reacting with antikeratin antibodies. Furthermore, a reversible and oxidation-dependent change of the electrophoretic mobility of some polypeptides in this fraction was detected. The immunocytochemical investigation of intermediate-size filament distribution in menadione-treated cells, however, revealed only minor modifications mainly consisting of perinuclear condensation of cytokeratin structures. These findings suggest that cytoskeletal structures (actin microfilaments, microtubules, and intermediate-size filaments) are actually significant targets in quinone-induced oxidative stress.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...