Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Electron Microscopy Technique 18 (1991), S. 315-324 
    ISSN: 0741-0581
    Keywords: Sample preparation ; ZnO formation ; Ion milling ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Natural Sciences in General
    Notes: Cross-sectional transmission electron microscopy (TEM) sample preparation of ZnSe/GaAs epitaxial films is investigated. Conventional argon ion milling is shown to produce a high density (∼ 5-8 × 1011/cm2) of small (diameter ∼ 60-80 Å) extended defects (stacking faults, microtwins, double positioning twins, etc.). In addition, transmission electron diffraction results indicate a thin ZnO layer can also occasionally form upon ion milling or electron-beam irradiation although the exact conditions for ZnO formation are not well understood. Conventional TEM (amplitude contrast) and high-resolution TEM (phase contrast) imaging in combination with transmission electron diffraction studies were performed to determine the optimum method of removing the ion milling related damage and ZnO layers during sample preparation. HF/HCl, NaOH/H2O, H2SO4/H2O2/H2O and Br2/CH3OH etching mixtures as well as low voltage argon or iodine ion milling were studied. A low energy (2 ke V) iodine or argon ion milling step was shown to remove the ZnO layer and reduced the density of the extended defects associated with Ar+ ion milling, but was unsuccessful in removing all of the defects. Auger electron spectroscopy results indicate residual iodine was either left on the surface or implanted beneath the surface during iodine ion milling. Etching the XTEM samples in HF/HCl was shown to be effective in removing the ZnO layer but had little or no effect on the ion milling induced defects. Etching the samples in a 0.5% Br2/CH3OH solution resulted in complete elimination of the ion milling induced extended defects including the residual defects associated with iodine ion milling. In addition the Br2/CH3OH etch produced the best surface morphology. Thus a brief (1-2 seconds) Br2/CH3OH etch after conventional preparation (argon ion milling) of cross-sectional ZnSe/GaAs TEM samples appears to be an inexpensive and superior alternative to iodine ion milling.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...