Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0197-8462
    Keywords: SAR ; microwave ; nonionizing radiation ; electric field ; conductivity ; biological effects ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: Radio frequency (RF) dosimetry is the quantification of the magnitude and distribution of absorbed electromagnetic energy within biological objects that are exposed to RF fields. At RF, the dosimetric quantity, which is called the specific absorption rate (SAR), is defined as the rate at which energy is absorbed per unit mass. The SAR is determined not only by the incident electromagnetic waves but also by the electrical and geometric characteristics of the irradiated subject and nearby objects. It is related to the internal electric field strength (E) as well as to the electric conductivity and the density of tissues; therefore, it is a suitable dosimetric parameter, even when a mechanism is determined to be “athermal.” SAR distributions are usually determined from measurements in human models, in animal tissues, or from calculations. This tutorial describes experimental techniques that are used commonly to determine SAR distributions along with the SAR limitations and unresolved problems. The methods discussed to obtain point, planar, or whole-body averaged SARs include the use of small E-field probes or measurement of initial rate of temperature rise in an irradiated object. © 1996 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 13 (1992), S. 527-542 
    ISSN: 0197-8462
    Keywords: microwave ; cellular-radio ; potential exposure ; electromagnetic environment ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: Because of a heightened public awareness of issues pertaining to the use of electromagnetic energy, concurrent with a rapid growth of the cellular telephone industry, a study was initiated to characterize the electromagnetic environment associated with typical cellsite antennas. In particular, the radio-frequency electromagnetic (RF) fields in the vicinity of several antenna towers, ranging in height from 46-82 m, were characterized by measurement. In all cases, the antennas were omnidirectional co-linear arrays. The maximal power densities considered representative of public exposure were found to be less than 100 μW/m2 (10 nW/cm2) per radio channel. Comparison of measured values with the corresponding values that were calculated from the free-space transmission formula indicated that the analytical technique is conservative (i.e., overestimates field levels). The measured and corresponding analytical values were found to be well below accepted exposure limits even when extrapolated to simultaneous and continuous operation of the maximal number of transmitters that would be expected to be installed at a cell-site. Additional measurements were made in the near field of the same antenna type in a roofmounted configuration. At a distance of 0.7 m from the antenna, the maximal power density in the main beam was found to be less than 30 W/m2 (3 mW/cm2) when normalized to sixteen radio channels (the maximal number used on a single antenna) and less than 30 mW/m2 (3μW/m2) at 70 m. In all cases, the effective radiated power (ERP) by each radio channel was 100 W referenced to a half-wave dipole. This paper describes the instrumentation and measurement techniques used for this study and provides a summary of the results. 1992 Wiley-Liss, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...