Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 15 (1994), S. 67-75 
    ISSN: 0197-8462
    Keywords: EEG ; electroencephalography ; LEET ; electromagnetic fields ; sleep ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: The sleep inducing effect of a 15 min treatment with either an active or an inactive Low Energy Emission Therapy (LEET) device emitting amplitude-modulated electromagnetic (EM) fields was investigated in a double-blind cross-over study performed on 52 healthy subjects. All subjects were exposed to both active and inactive LEET treatment sessions, with an interval of at least I week between the two sessions. LEET consists of 27.12 MHz amplitude-modulated (sine wave) EM fields emitted intrabuccally by means of an electrically conducting mouthpiece in direct contact with the oral mucosa. The estimated local peak SAR is less than 10 W/kg in the oral mucosa and 0.1 to 100 mW/kg in brain tissue. No appreciable sensation is experienced during treatment, and subjects are therefore unable to tell whether they are receiving an active or an inactive treatment. In this study the active treatment consisted of EM fields intermittently amplitude-modulated (sine wave) at 42.7 Hz for 3 s followed by a pause of 1 s during which no EM fields were emitted. During the inactive treatment no EM fields were emitted. Baseline EEGs were obtained and 15 min post-treatment EEGs were recorded and analyzed according to the Loomis classification.A significant decrease (paired t test) in sleep latency to stage B2 (-1.78 ± 5.57 min, P = 0.013), and an increase in the total duration of stage B2 (1.15 ± 2.47 min, P = 0.0008) were observed on active treatment as compared with inactive treatment. The deepest sleep stage achieved (B1 to D) following active treatment was also significantly higher than that following inactive treatment (P = 0.040). We conclude 27.12 MHz electromagnetic fields, intermittenly amplitude-modulated at 42.7 Hz, result in a significant sleep inducing effect in healthy subjects. © 1994 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...