Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2072
    Keywords: Dopamine ; Prolactin ; Lithium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Maintenance of rats on a lithium-containing diet for 3–21 days resulted in a suppression of prolactin (PRL) secretion in vivo and in vitro. Lithium treatment also resulted in an increase in the activity of tuberoinfundibular dopaminergic neurons, as evidenced by an increased accumulation of dihydroxyphenylalanine (DOPA) in the median eminence after inhibition of DOPA decarboxylase and an increased concentration of dopamine in the anterior pituitary gland. The accumulation of DOPA in the neurointer-mediate lobe of the pituitary gland, the prefrontal cortex, the striatum and the nucleus accumbens was also enhanced by lithium treatment. It is concluded that lithium treatment enhances the synthesis of dopamine in many brain regions and that an increased activity of tuberoinfundibular dopaminergic neurons results in an enhanced inhibitory control of PRL secretion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1435-1463
    Keywords: Lithium ; imipramine ; desipramine ; tranylcypromine ; 5-HT1A receptors ; adenylate cyclase ; hippocampus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In order to determine the relevance of 5-HT1A-related signal transduction in the mode of action of lithium and antidepressants, the effects of long-term treatment with these drugs on the 5-HT1A-mediated inhibition of forskolin-stimulated adenylate cyclase activity were investigated in the rat hippocampal membranes. Chronic administration of antidepressants altered neither the [3H]8-hydroxy-2-(di-n-propylamino)tetralin ([3H]8-OH-DPAT) binding sites nor the inhibition of forskolin-stimulated adenylate cyclase activity by 5-HT. Long-term treatment with lithium did not affect the inhibitory effect of 5-HT on the forskolin-stimulated adenylate cyclase activity, either. Neither the stimulation by forskolin nor the inhibition by guanyl-5′-ylimidodiphosphate (Gpp(NH)p) of adenylate cyclase activity was not influenced by lithium treatment, suggesting that lithium has no effects on the components of adenylate cyclase system distal to the 5-HT1A receptors. These results indicate that the 5-HT1A-mediated neural transmission has not such an important relevance in the mechanisms of action of lithium or antidepressants.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...