Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Intracerebral infusion  (1)
  • Locomotion  (1)
  • 1
    ISSN: 1432-2072
    Schlagwort(e): Key words Catecholamine ; Psychotomimetic ; Nucleus accumbens ; Locomotion ; Mesocorticolimbic ; Ventral mesencephalon
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Abstract  Acute administration of phencyclidine to rats potently activates mesocorticolimbic dopaminergic neurons. The activation of dopamine release and utilization in the prefrontal cortex and nucleus accumbens are associated with profound cognitive impairment and hyperlocomotion, respectively. This dopaminergic activation by phencyclidine is not mediated by direct effects on the cell body regions of the dopamine neurons; however, phencyclidine augments dopamine release locally in the terminal fields. In the present study, the possible involvement of the prefrontal cortex in mediating activation of the mesolimbic dopamine system by phencyclidine was examined. Ibotenic acid lesions of the prefrontal cortex attenuated the biochemical activation of the mesolimbic dopamine neurons by PCP, and prefrontal lesions sharply blunted phencyclidine-, but not amphetamine- or novelty-, induced hyperlocomotion. In addition, injection of phencyclidine directly into the prefrontal cortex increased dopamine utilization in the nucleus accumbens and induced hyperlocomotion. In summary, these studies show that phencyclidine activates the mesolimbic pathway through a mechanism in the prefrontal cortex, possibly by disinhibiting the cortical circuit and activating corticofugal glutamatergic release in the ventral tegmental area.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1432-2072
    Schlagwort(e): Key words Clonidine ; ST-91 ; CNQX ; LC ; Amygdala ; Intracerebral infusion ; Withdrawal ; Naloxone ; Morphine ; Opioid ; Rat
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Abstract  Both the locus coeruleus (LC) and the amygdala have been implicated in aspects of opiate dependence and withdrawal. The LC is known to be one of the most sensitive sites for precipitating withdrawal behaviors after local opiate antagonist infusions in morphine-dependent subjects. The amygdala is also known to mediate antagonist-induced withdrawal behaviors and aversive motivational states. The goal of the present study was to evaluate directly the ability of noradrenergic agonists and glutamatergic antagonists to attenuate naloxone-precipitated withdrawal behaviors when infused into the LC or the central nucleus of the amygdala (CeA). The alpha-2-noradrenergic agonists clonidine or ST-91 were infused into the CeA to compare the effects of noradrenergic activation in the CeA to the attenuation of withdrawal previously observed in rats infused with clonidine into the LC, since the LC and CeA are known to contain co-localized opiate and noradrenergic receptors. The effects of microinfusions of the non-NMDA excitatory amino acid antagonist 6-cyano-2,3-dihydroxy-7-nitroquinoxaline (CNQX) were also infused into the LC and CeA since opiate withdrawal is associated with increased glutamatergic transmission. Intra-CeA clonidine or ST-91 (2.4 µg/0.5 µl or 1.0 µl) produced significant reductions primarily in the occurrence of irritability. Conversely, intra-CeA or intra-LC infusions of CNQX (2.5 µg/0.5 µl) significantly attenuated naloxone-precipitated withdrawal, an effect similar to the attenuation previously observed after intra-LC clonidine infusions. These data demonstrate the specific behavioral effects of altering glutamatergic and noradrenergic neurotransmission in the LC or CeA during naloxone-precipitated opiate withdrawal. Elucidation of the neuroanatomical circuitry involved in opiate withdrawal should increase our understanding of the neuroadaptations associated with drug dependence and subsequent withdrawal behavior.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...