Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 9 (1988), S. 159-166 
    ISSN: 0197-8462
    Keywords: Lorentz force ; Maxwell stress ; threshold field strength ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: Static magnetic fields affect the diffusion of biological particles in solutions through the Lorentz force and Maxwell stress. These effects were analyzed theoretically to estimate the threshold field strength for these effects. Our results show that the Lorentz force suppresses the diffusion of charged particles such as Na+, K+, Ca2+, Cl-, and plasma proteins. However, the threshold is so high, i.e., more than 104 T, that the Lorentz force does not affect the ion diffusion at typical field strengths (a few Tesla at most). Since the threshold of gradient fields for producing a change in ion diffusion through the Maxwell stress is more than 105 T2/m for paramagnetic molecules (FeCl3, O2) and plasma proteins, their diffusion would be unaffected by typical gradient fields (100 T2/m at most) and even by high gradient fields (less than 105 T2/m) used in magnetic separation techniques. In contrast, movement of deoxygenated erythrocytes and FeCl3 colloids (more than 103 molecules) is influenced by the usual gradient fields due to a volume effect.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...