Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0947-3440
    Keywords: Phenazin-5(10H)-yl ; ESR spectroscopy ; Radical pairs ; π Interactions ; Dimer absorption ; Magnetic susceptibility ; Nitrogen heterocycles ; Radicals ; Magnetic properties ; Solid-state chemistry ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Introduction of tert-butyl groups into the phenazine frame-work was accomplished by treatment of 5-acetyl-5,10-dihydrophenazine (2a) with tert-butyl chloride in the presence of AlCl3. Starting from the 2,8- or 3,7-di-tert-butyl-substituted derivatives 2c and 2b, a series of phenazin-5(10H)-yl radicals (1c-i) was synthesized and characterized by ESR and EN-DOR spectroscopy. With the exception of 1c, all phenazin-5(10H)-yls were obtained in crystalline form, and for 1d-f the long-wavelength absorption band at λ ≈ 870 nm indicates intermolecular π-π interactions in the solid state. For 1d, 1e and 1h the crystal structure could be determined. The unit cell of 1d consists of eight phenazin-5(10H)-yls. Surprisingly, four of them are arranged in radical pairs, whereas the other four lie independently in the lattice. In agreement with this structure, the magnetic susceptibility results correspond to a content of 50% monoradical and an almost complete spinpairing in the radical pairs up to T = 220 K. In 1e, the four phenazin-5(10H)-yls in the unit cell are arranged in two independent radical pairs, A and B, which are characterized by close interplanar distances and short intermolecular contacts between atoms with significant spin populations. Accordingly, the susceptibility data indicate strong spin-pairing at low temperature. Due to extensive steric shielding of the phenazin-5(10H)-yl framework, the crystal structure of 1h gives no evidence of any π-π interactions between adjacent radicals. As expected, the magnetic susceptibility of 1h corresponds to that of an ordinary monoradical.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1434-1948
    Keywords: Bridging ligands ; Manganese ; Azido bridge ; Alternating chain ; Magnetic properties ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The ligands 3-ethyl-4-methylpyridine (3-Et,4-Mepy) and azide coordinate to MnII forming an alternating chain with the formula [Mn(3-Et,4-Mepy)2(μ-N3)2]n. This compound crystallizes in the space group P-1. The compound consists of chains of octahedrally coordinated manganese atoms alternately bridged by double end-to-end (μ1,3) and double end-on (μ1,1) azido bridges, which results in a structurally and magnetically alternating chain. The 3-ethyl-4-methylpyridine ligands are arranged trans, completing the six-fold coordination spheres of the manganese atoms. The Mn-Mn distances are distinctly different: Mn(1)-Mn(1A) = 5.149(3) Å (double end-to-end azido bridge) and Mn(1)-Mn(1B) = 3.402(2) Å (double end-on azido bridge). The magnetic properties of the compound, as studied in the temperature range 300-4 K, show bulk antiferromagnetic interaction. Fitting of the magnetic data by using an equation for alternating ferro-antiferromagnetic S = 5/2 1-D systems gives the parameters JAF = -13.7(1) cm-1, JF = 2.4(1) cm-1, g = 2.036(2).
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...