Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2072
    Keywords: Key words GABAA receptor ; Propofol ; Midazolam ; NMDA receptor ; Ketamine ; Noradrenaline ; Medial prefrontal cortex ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Rationale: N-Methyl-d-aspartate (NMDA) receptor antagonism and GABAA receptor activation are believed to be critical targets for general anesthetic action. However, as NMDA antagonism of intravenous anesthetic agents causes post-anesthetic emergence reactions such as hallucination and agitation, while the GABAA-mimetic intravenous anesthetic agents do not, these two classes of intravenous anesthetic agents produce differential clinical profiles. Objective: We have investigated the differential effects of the GABAA agonists propofol and midazolam and the NMDA antagonist ketamine on noradrenaline release from the medial prefrontal cortex of the rat using microdialysis, as noradrenergic neurons have a role to play in anesthesia and are known to be important in the control of sleep, attention and learning. Methods: Twenty-one male Wistar rats (200– 270 g) were randomly allocated into three groups: ketamine 100 mg.kg–1 (n=6), propofol 60 mg.kg–1 (n=8) and midazolam 5 mg.kg–1 (n=7) IP. A unilateral guide cannula was implanted stereotaxically into the medial prefrontal cortex under pentobarbital anesthesia (50 mg.kg–1 IP). Forty-eight hours later, a dialysis probe was inserted through the guide cannula, and perfused with an artificial cerebrospinal fluid solution containing 1 mM pargyline. Following an equilibration period, samples of dialysate were collected every 10 min. Noradrenaline content was measured by high-performance liquid chromatography using an electrochemical detector. Results: Anesthesia times, defined as the duration between the loss of righting reflex and recovery, were 24.7±5.6 (SEM), 20.5±1.9 and 25.2±1.5 min for propofol, midazolam and ketamine, respectively (no significant between-group differences). Both GABAA agonists, propofol and midazolam, significantly decreased noradrenaline release (75% and 71% of basal release, respectively). The NMDA antagonist ketamine markedly increased noradrenaline release (413% of basal). Conclusion: These data suggest that different clinical profiles observed with these two classes of sedatives may result from changes in noradrenaline release from the medial prefrontal cortex.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1438-8359
    Keywords: Airway resistance ; Measurement ; General anesthesia ; airflow ; Lung volume
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The effects of lung volume and respiratory airflow on airway resistance were studied in five anesthetized and paralyzed patients. Airway resistance measured during the inspiratory phase with intermittent constant airflow inflatoins decreased in inverse correlationship to increases in lung volume. Airway resistance measured during the expiratory phase with an airway interruption technique, on the other hand, increased with a linear relationship to the expiratory airflow as expressed by a function of Y = K1 + K2X. K1, calculated from the values of airway resistance corresponding to three different airflows, was unaffected by intentional expiratory resistance loading. Thus, simultaneously with the measurement of airway resistance by this method, expiratory gas sampling with a Douglas bag can be done if necessary. Since the K2 value of the endotracheal tube used in this study (Portex® I.D. 8 mm, length 26 cm) was quite high (5.0 cmH2O·1−2·sec2), depending on the airflow, the presence of the endotracheal tube strongly affected the measurement of airway resistance during general anesthesia. K1 measured by the above method, however, may be considered as the best way to evaluate the lower airway resistance independent of either lung volume or expiratory airflow. (Sakai T, Yoshida H, Yano H et al.: Measurement of airway resistance in anesthetized and paralyzed subjects: proposal for evaluation of K1 values. J Anesth 2: 139–145, 1988)
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...