Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Leaf development ; Mesophyll (cells, protoplasts) ; Microtubule (patterns, density) ; Nicotiana ; Tissue culture (in vitro competence) ; Triticum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Changes in the density of microtubular mesh-works were analysed in mesophyll cells and mesophyll derived protoplasts of Nicotiana tabacum L. and Triticum aestivum L. during leaf development. The main purpose of this study was to test whether the low density, if not lack, of microtubular networks recently described in protoplasts that had been isolated from fully differentiated mesophyll cells happened during protoplast isolation or whether the loss of microtubules actually occurred during differentiation of the leaf tissue. Immunofluorescence microscopy showed that the density of the microtubular cytoskeleton in the leaf tissue decreased steadily after cessation of cell growth in both species. Nevertheless, in Triticum microtubule disappearance was swifter and occurred along a gradient from the base to tip of the leaf, a phenomenon reflecting the differences in the ontogeny between the dicotyledonous Nicotiana and the mono-cotyledonous Triticum leaves. Protein extraction from leaf tissues and Western blot analysis indicated that in both species the disappearance of microtubules was the result of a degradation of tubulin and not only due to a depolymerisation into tubulin subunits. When the cell walls were removed from live cells and the protoplasts released, the original patterns of the microtubules became obscured and, particularly in differentiated cells, the integrity and density of the microtubule strands deteriorated. The potential application of the density of the microtubular cytoskeleton as a marker in studies on differentiation and dedifferentiation in mesophyll cells and protoplasts is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 153 (1990), S. 141-148 
    ISSN: 1615-6102
    Keywords: Cell shaping ; Cell wall ; Immunofluorescence ; Mesophyll ; Microtubules ; Triticum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Differentiated mesophyll cells ofTriticum aestivum (cv. Star) exhibit a lobed outline resembling tube-shaped balloons with almost regularly spaced constrictions. It was shown that these constrictions are probably the result of hoops of wall reinforcements laid down during early stages of cell expansion. It appears that these hoops prevent expansion in the corresponding regions and thus give rise to the peculiar cell shape. The comparatively thin cell walls of the bulges are uniformly reinforced after the lobed shape is established. By using immunofluorescence techniques a change in the pattern of cortical microtubule arrangement was observed which corresponded to the pattern of cell wall deposition. Discrete bands of microtubules were found beneath the sites of hoop reinforcement. These bands disintegrated during late stages of cell expansion with microtubules fanning out into the almost empty regions of the bulges.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 173 (1993), S. 8-12 
    ISSN: 1615-6102
    Keywords: Nigella damascena ; Mesophyll ; Arm-palisade ; Microtubules ; Wall deposition ; Cell shaping
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Cell shaping in the mesophyll ofNigella damascena was investigated with the aim of determining the origin of the arm-like protrusions, which are characteristic of, e.g., arm-palisade cells. It was found that hoops of cell wall were deposited during the early stages of cell expansion. The hoops were interconnected, thus embracing the cells with a wide-meshed net of local wall reinforcement. The pattern of wall deposition in the extra-cellular matrix correlated with a pattern of bands of microtubules in the cortical cytoplasm of the cells. During lateral expansion bulges were forced through the comparatively thin walls of spaces between the meshes, giving rise to the arm-like protrusions. After establishing the cell shape the bands of microtubules disintegrated and cell wall was uniformly deposited. The results are discussed in the context of the mode of cell shaping observed in the mesophyll of other systems and of a previous, classical hypothesis on the origin of arms in mesophyll cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...