Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1439-6327
    Keywords: Key words Carbohydrate ; Dehydration ; Metabolism ; Recovery ; Thermoregulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Recovery from prolonged exercise involves both rehydration and replenishment of endogenous carbohydrate stores. This study examined the influence of drinking a carbohydrate-electrolyte solution on short-term recovery and subsequent exercise capacity in a warm environment. Thirteen healthy male volunteers completed two trials, at least 7 days apart. On each occasion subjects performed an initial treadmill run at 60% of maximal oxygen uptake (VO2max), for 90 min or until volitional fatigue (T1), in a warm environment (35 °C, 40% relative humidity, RH). Volitional ingestion of water was permitted during each of the exercise trials. During a subsequent 4-h recovery period (REC) subjects consumed either a 6.9% carbohydrate-electrolyte solution (CES) or a sweetened placebo (P), in a volume equivalent to 140% of body mass loss. Following REC, subjects ran to exhaustion at the same %VO2max in order to assess their endurance capacity (T2). Mean (SEM) run times during T1 did not differ between the CES [74.8 (4.6) min] and P [72.5 (5.2) min] trials. Body mass was reduced (P 〈 0.01) by 1.9 (0.2)% (CES) and 1.7 (0.2)% (P), and plasma volume (P 〈 0.01) by 6.0 (0.9)% (CES) and 5.4 (1.0)% (P) during the T1 trials. During REC 2006 (176) ml and 1830 (165) ml of fluid was ingested, providing 138 (12) g and 0 g of carbohydrate in the CES and P trials, respectively. Prior to T2, plasma volume and net fluid balance were similarly restored [CES +58 (26) g; P −4 (68) g] in both trials. During T2 the exercise duration was longer (P 〈 0.01) in the CES compared to the P trial [CES 60.9 (5.5) min; P 44.9 (3.0) min]. Thus, provided that an adequate hydration status is maintained, inclusion of carbohydrate within an oral rehydration solution will delay the onset of fatigue during a subsequent bout of prolonged submaximal running in a warm environment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    European journal of applied physiology 39 (1978), S. 7-16 
    ISSN: 1439-6327
    Keywords: Exercise ; Carbohydrate ; Metabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Four subjects were studied during exercise at 50% of maximum oxygen uptake after a normal diet, after a low carbohydrate (CHO) diet following exercise-induced glycogen depletion, and after a high CHO diet. This regime has previously been shown to cause changes in the amount of glycogen stored in the exercising muscles. Metabolic and respiratory parameters were measured during the exercise. The respiratory exchange ratio, blood lactate, blood pyruvate, blood glucose and plasma triglycerides were lower than normal following the low CHO diet and higher than normal following the high CHO diet. Plasma free fatty acids and plasma glycerol were higher than normal after the low CHO diet and lower than normal after the high CHO diet. The contribution of CHO to metabolism was less than normal after the low CHO diet and greater than normal after the high CHO diet. The altered availability of FFA does not appear to be a result of the variations in the blood lactate content.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...