Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1615-6102
    Keywords: Cell cycle ; Microtubule ; Microtubule organizing center ; Synchronization ; Tobacco BY-2 cells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A 49 kDa protein in tobacco BY-2 cells has been found to be cross-reactive with antibodies raised against a 51 kDa protein that was isolated from sea urchin centrosomes and identified as a microtubule-organizing center (MTOC) in animal cells. Tracing the fate of the 49 kDa protein during progression of the cell cycle in highly synchronized tobacco BY-2 cells revealed that this protein was colocalized with plant microtubules (MTs): the location of the 49 kDa protein coincided with preprophase bands (PPBs), mitotic spindles and phragmoplasts. Furthermore, between the M and G1 phases, the 49 kDa protein was observed in the perinuclear regions, in which the initials of MTs are organizing to form cortical MTs. At the G1 phase the location of the 49 kDa protein in the cell cortex coincided with that of the cortical MTs. It appeared that the 49 kDa protein in the cell cortex was transported as granules from the perinuclear regions. Thus, it is highly probable that the 49 kDa protein, which reacts with antibodies against the 51 kDa protein in sea urchin centrosomes, plays the role of an MTOC in plant cells. Thus, the mechanisms for organizing MTs in higher organisms appear to share a common protein, even though the organization of MTs is superficially very different in plant and animal cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1615-6102
    Keywords: Cell cycle ; Elongation factor 1α ; Microfilament ; Microtubule ; Tobacco BY-2 cell line
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary During cell cycle transition from M to G1 phase, micro-tubules (MTs), organized on the perinuclear region, reached the cell cortex. Microfilaments (MFs) were not involved in this process, however, MFs accumulated to form a ring-like structure in the division plane and from there they elongated toward the distal end in the cell cortex. Subsequently, when MTs elongated along the long axis of the cells, towards the distal end, the MTs ran into and then associated with the predeveloped MFs in the cell cortex, suggesting the involvement of MFs in organizing the parallel oriented MTs in the cell cortex. When cortical MTs were formed in the direction transverse to the long axis of cells, the two structures were again closely associated. Therefore, with regards to the determination of the direction of organizing MTs, predeveloped MFs may have guided the orientation of MTs at the initial stage. Disorganization of MFs in this period, by cytochalasins, prevented the organization of cortical MTs, and resulted in the appearance of abnormal MT configurations. We thus demonstrate the involvement of MFs in determining the orientation and organization of cortical MTs, and discuss the possible role of MFs during this process.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...