Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0983
    Keywords: Yeast ; Mitochondria ; Aminoacyl-tRNA synthetase ; RNA splicing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The mitochondrial leucyl-tRNA synthetase (mLRS) of Saccharomyces cerevisiae is involved in both mitochondrial protein synthesis and pre-mRNA splicing. We have created mutations in the regions HIGH, GWD and KMSKS, which are involved in ATP-, amino acid-and tRNA-binding respectively, and which have been conserved in the evolution of group I tRNA synthetases. The mutants GRD and NMSKS have no discernible phenotype. The mutants AWD and ARD act as null alleles and lead to the production of 100% cytoplasmic petites. The mutants HIGN, NIGH and KMSNS are unable to grown on glycerol even in the presence of an intronless mitochondrial genome and accumulate petites to a greater extent than the wild-type but less than 40%. Experiments with an imported bI4 maturase indicate that the lesion in these mutations primarily affects the synthetase and not the splicing functions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: Key words Saccharomyces douglasii ; Saccharomyces cerevisiae ; CBP2 ; Mitochondria ; Pre-mRNA processing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  In Saccharomyces cerevisiae the only known role of the CBP2 gene is the excision of the fifth intron of the mitochondrial cyt b gene (bI5). We have cloned the CBP2 gene from Saccharomyces douglasii (a close relative of S. cerevisiae). A comparison of the S. douglasii and S. cerevisiae sequences shows that there are 14% nucleotide substitutions in the coding region, with transitions being three times more frequent than transversions. At the protein level sequence identity is 87%. We have demonstrated that the S. douglasii CBP2 gene is essential for respiratory growth in the presence of a wild-type S. douglasii mitochondrial genome, but not in the presence of an intronless S. cerevisiae mitochondrial genome. Also the S. douglasii and S. cerevisiae CBP2 genes are completely interchangeable, even though the intron bI5 is absent from the S. douglasii mitochondrial genome.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1617-4623
    Keywords: Yeast ; Mitochondria ; pre-mRNA splicing ; tRNA synthetase gene ; Incipient evolution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We studied the NAM2 genes of Saccharomyces douglasii and Saccharomyces cerevisiae, and showed that they are interchangeable for all the known functions of these genes, both mitochondrial protein synthesis and mitochondrial mRNA splicing. This confirms the prediction that the S. douglasii NAM2D gene encodes the mitochondrial leucyl tRNA synthetase (EC 6.1.1.4). The observation that these enzymes are interchangeable for their mRNA splicing functions, even though there are significant differences in the intron/exon structure of their mitochondrial genome, suggests that they may have a general role in yeast mitochondrial RNA splicing. A short open reading frame (ORF) precedes the synthetase-encoding ORF, and we showed that at least in S. cerevisiae this is not essential for the expression of the gene; however, it may be involved in a more subtle type of regulation. Sequence comparisons of S. douglasii and S. cerevisiae revealed a particularly interesting situation from the evolutionary point of view. It appears that the two yeasts have diverged relatively recently: there is remarkable nucleotide sequence conservation, with no deletions or insertions, but numerous (albeit non-saturating) silent substitutions resulting from transitions. This applies not only to the NAM2 coding regions, but also to two other ORFs flanking the NAM2 ORF. The regions between the ORFs (believed to be intergenic regions) are much less conserved, with several deletions and insertions. Thus S. douglasii and S. cerevisiae provide an ideal system for the study of molecular evolution, being two yeasts “caught in the act” of speciation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1617-4623
    Keywords: Texas maize cytoplasmic male sterility ; Saccharomyces cerevisiae ; Mitochondria ; Image and flow cytometry ; 3,3′-Dihexyloxacarbocyanine iodide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The urf13TW gene, which is derived from the mitochondrial T-urf13 gene responsible for Texas cytoplasmic male sterility in maize, was expressed in Saccharomyces cerevisiae by targeting its translation product into mitochondria. Analysis by oxygraphy at the population level revealed that in the presence of methomyl the oxygen uptake of intact yeast cells carrying the targeted protein is strongly stimulated only with ethanol as respiratory substrate and not with glycerol, lactate, pyruvate, or acetate. When malate is the substrate oxidized by isolated mitochondria, interaction between the targeted protein and methomyl results in significant inhibition of oxygen uptake. This inhibition is eliminated and oxygen uptake is stimulated by subsequent addition of NAD+. Using 3,3′-dihexyloxacarbocyanine iodide [DiOC6(3)] as probe, interactive laser scanning and flow cytometry, which permit analysis at the individual cell level, demonstrated that specific staining of the mitochondrial compartment is obtained and that DiOC6(3) fluorescence serves as a measure of the membrane potential. Finally, it was shown that, as in T cytoplasm maize mitochondria, HmT toxin and methomyl dissipate the membrane potential of yeast mitochondria that carry the foreign protein. Furthermore, the results suggest that the HmT toxin and methomyl response is related to the plasmid copy number per cell and that the deleterious effect induced by HmT toxin is stronger than that of methomyl.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...