Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Cytokinesis ; Generative cell ; Mitosis ; Ornithogalum ; Phragmoplast ; Pollen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The organization of the microtubule (Mt) cytoskeleton during mitosis and cytokinesis of the generative cell (GC) in Ornithogalum virens L. (bicellular pollen type, chromosome number, n = 3) from prophase to telophase/sperm formation was investigated by localization of α-tubulin immunofluorescence using a conventional fluorescence microscope and a confocal laser scanning microscope. Chromosomes were visualized with DNA-binding fluorochrome dyes (ethidium bromide and 4′6-diamino-2-phenyl-indole). The GC of O. virens is characterized by G2/M transition within the pollen grain and not in the pollen tube as occurs in the majority of species with bicellular pollen. It was found that prophase in the GC starts before anthesis and prometaphase takes place after 10 min of pollen germination. The prophase Mts are organized into three prominent bundles, located near the generative nucleus. The number of these Mt bundles is the same as the number of GC chromosomes, a relation which has not previously been considered in other species. The most evident feature in the prophase/ prometaphase transition of O. virens GC is a direct rapid rearrangement of Mt bundles into a network which appears to interact with kinetochores and form a typical prometaphase Mt organization. The metaphase chromosomes are arranged into a conventional equatorial plate, and not in tandem as is thought to be characteristic of GC metaphase. The metaphase spindle consists of kinetochore fibres and a few interzonal fibres which form dispersed poles. Anaphase is characterized by a significant elongation of the mitotic spindle concomitant with the extension of the distance between the opposite poles. At anaphase the diffuse poles converge. Cytokinesis is realized by cell plate formation in the equatorial plane of the GC. The phragmoplast Mts between two future sperm nuclei appear after Mts of the mitotic spindle have disappeared.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1618-0860
    Keywords: Gagea lutea ; Generative cell ; Microtubule organization ; Mitosis ; Sperm cell dimorphism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Video microscopy and conventional or Confocal Laser Scanning Microscopy after DAPI staining and anti-α-tubulin labelling were used to study the asymmetrical division of the generative cell (GC) inGagea lutea. Pollen was cultured for up to 8 hr in a medium containing 10% poly (ethylene glycol), 3.0% to 3.8% sucrose, 0.03% casein acid hydrolysate, 15 mM 2-(N-morpholinoethane)-sulphonic acid-KOH buffer (pH 5.9) and salts. In the pollen grain, the GC had a spherical or ovoid shape and contained a fine network of intermingled microtubules. As the GC entered into the pollen tube, it assumed a cylindrical shape with a length often exceeding 250 μm. A cage of microtubules then developed around the nucleus. The presence of dense and thick microtubular bundles in front of the generative nucleus within the GC coincided with the translocation of the nucleus to the leading end of the GC. No pre-prophase band was ever detected, but a distinct prophase spindle of microtubules was formed. In some GCs a tubulin-rich dot became visible at each pole of the spindle. After nuclear envelope breakdown, the bundles of microtubules spread between the chromosomes and became oriented into parallel arrays. The spindle became shorter at metaphase, and there was no tubulin labelling at the site of the metaphase plate. At anaphase, the microtubular apparatus lost its spindle-shape and a bridge of prominent bundles of microtubules connected the two daughter nuclei. At telophase, the site of the cell plate remained unstained by the anti-α-tubulin antibody, but a distinct phragmoplast of microtubules was formed more closely to the leading nucleus, resulting in the formation of unequal sperm cells (SCs). The leading SC was up to 2.5 times smaller than the following SC and it contained a smaller or equal number of nucleoli.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...