Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2013
    Keywords: Renal tubule ; Sulfate transport ; Na+ coupled transport ; Thiosulfate ; Molybdate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Using the standing droplet technique in the proximal convolution and simultaneous microperfusion of the peritubular capillaries, the decrease in luminal sulfate concentration with time and the zero net flux transtubular concentration difference of sulfate ( $$\Delta c_{{\text{SO}}_{\text{4}}^{{\text{2 - }}} } $$ ) at 45 s was determined — the latter being taken as a measure of the rate of active sulfate reabsorption. Starting with 0.5 mmol/l sulfate in both perfusates the $$\Delta c_{{\text{SO}}_{\text{4}}^{{\text{2 - }}} } $$ value of 0.35 mmol/l was approached exponentially with a half value time of 4.3 s. The $$\Delta c_{{\text{SO}}_{\text{4}}^{{\text{2 - }}} } $$ values in the early proximal and late proximal convolution did not deviate from each other. If the Na+ concentration in the perfusates was reduced, the $$\Delta c_{{\text{SO}}_{\text{4}}^{{\text{2 - }}} } $$ approached zero and extrapolated to a slightly negative value (c i〉c o). When 1 mmol/l ouabain was added to the perfusates $$\Delta c_{{\text{SO}}_{\text{4}}^{{\text{2 - }}} } $$ decreased by 66% (the latter experiments were performed in the golden hamster which is more sensitive to ouabain than the rat). 1 mmol/l thiosulfate diminished $$\Delta c_{{\text{SO}}_{\text{4}}^{{\text{2 - }}} } $$ by 68% and 1 mmol/l molybdate by 24%. Omitting or replacing bicarbonate by HEPES or glycodiazine reduced the sulfate reabsorption significantly, while acetazolamide (0.1 mmol/l) and increasing the CO2-pressure from 4.66 to 14.0 kPa (i.e. 5–15% CO2) had no effect. SITS 1 mmol/l had no effect on sulfate reabsorption. The data indicate that the sulfate reabsorption is driven by a Na+ gradient and inhibited by thiosulfate and molybdate, i.e. molecules which have a similar tetrahedral molecule structure. The sulfate reabsorption depends in an undefined manner on the presence of bicarbonate ions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 387 (1980), S. 127-132 
    ISSN: 1432-2013
    Keywords: Renal tubule ; Thiosulfate transport ; Na+ coupled transport ; Sulfate transport ; Paraaminohippurate transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Using the standing droplet method in the late proximal convolution and simultaneous microperfusion of the peritubular capillaries, the zero net flux transtubular concentration difference of thiosulfate at 45 s was determined, the latter being taken as a measure of active thiosulfate transport. Under control conditions, in the presence of Na+, near zero Δc values were observed. When 1 mmol/l carinamide or paraaminohippurate (PAH) were added to the perfusates significant reabsorptive Δc arose. However, when 7.5 mmol/l sulfate was added to the Na+-free secretory Δc values were observed. Tested under Na+-free conditions, the secretory Δc was not influenced by simultaneously present 5 mmol/l of SO 4 2− but was diminished by 50 mmol/l SO 4 2− . PAH (1 mmol/l), carinamide (0.2 mmol/l) and probenecid (1 mmol/l) decreased the secretory Δc by 48, 65 and 48%, respectively. The PAH secretion was not influenced, when thiosulfate or sulfate up to 50 mmol/l was added to both perfusates. Under Na+-free conditions the Δc of thiosulfate in early loops of the proximal convolution is higher than in late loops, while for PAH this pattern is reversed. Taken together with the previously published inhibition of sulfate reabsorption by thiosulfate the data indicate 1. thiosulfate is reabsorved by the Na+-dependent sulfate transport system and 2. thiosulfate is simultaneously secreted by a carinamide-, probenecid-and PAH-sensitive secretory system. The secretory system might also be shared by sulfate. The thiosulfate net flux is the result of the difference in the activity of the counteracting transporters, located at the luminal and contraluminal cell side. Is is possible that the higher activity of the transporter at one cell side leads to a reversal of the flux through the transporter at the other cell side.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 368 (1977), S. 245-252 
    ISSN: 1432-2013
    Keywords: Renal tubule ; H+ ion secretion ; Na+ coupled transport ; Ouabain ; SITS
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The rate of active transport by the proximal renal tubule of amino acid (l-histidine), sugar (α-methyl-d-glycoside), H+ ions (glycodiazine), phosphate and para-aminohippurate was evaluated by measuring the zero net flux concentration difference (Δc) of these substances. In the case of calcium the electrochemical potential differenceΔc +zFci Δϕ/RT) was the criterion employed. The rate of isotonic Na+-absorption (JNa) was measured with the shrinking droplet method. The effect of ouabain on the transport of these substances was tested in the golden hamster and the effect of SITS (4-acetamido-4′isothiocyanatostilbene 2,2′-disulfonic acid) was observed in rats. Ouabain (1 mM) applied peritubularly incompletely inhibited JNa (80%), but in combination with acetazolamide (0.2 mM) the inhibition was almost complete (93%). In addition, ouabain inhibited the sodium coupled (secondary active) transport processes ofl-histidine, α-methyl-d-glycoside, calcium and phosphate by more than 75%. It did not affect H+ (glycodiazine) transport and PAH transport was only slightly affected. When SITS (1 mM) was applied from both sides of the cell it inhibited H+ (glycodiazine) transport by 72% and reduced JNa by 38% when given from only the peritubular cell side. SITS (1 mM), however, had no significant affect on H+ secretion and sodium reabsorption if it was applied from only the luminal side. Furthermore it had no affect on the other transport processes tested, regardless of the cell side to which it was applied. When the HCO 3 − buffer or physically related buffers were omitted from the perfusate the absorption of Na+ was reduced by 66%, phosphate by 44%, andl-histidine by 15%. All the other transport processes tested were not significantly affected. The data are consistent with the hypothesis that the active transport processes of histidine, α-methyl-d-glycoside and phosphate, which are located in the brush border, are driven by a sodium gradient which is abolished by ouabain. This may also apply to the Na+-Ca2+ countertransport located at the contraluminal cell side. The residual Na+ transport remaining in the presence of ouabain is likely to be passively driven by the continuing H+ transport which probably is driven directly by ATP. SITS seems to inhibit the exit step of HCO 3 − from the cell and secondary to that, the luminal H+-Na+ exchange and consequently the Na+ reabsorption. In the absence of HCO 3 − buffer in the perfusates the luminal H+-Na+ exchange seems to be affected and the pattern of inhibition of the other transport processes is almost the same as with SITS. The different effects onP i reabsorption observed under these conditions might be explained by possible variations in intracellular pH.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...