Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0568
    Keywords: Key words Reptiles ; Gastrointestinal tract ; Nitric oxide ; VIP ; Galanin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  The distribution of neurons containing the enzymes NADPH-diaphorase (NADPH-d) and nitric oxide synthase (NOS) has been studied in the gastrointestinal tract of lizard (Podarcis s. sicula) and snake (Thamnophis sirtalis). The techniques employed were the NADPH-d/nitroblue tetrazolium histochemical method, and the indirect immunofluorescence applied to cryostat sections and to whole-mount preparations. The colocalization of NADPH-d with NOS, with vasoactive intestinal polypeptide (VIP) and with galanin (Gal) was also studied, and a Western blot analysis using an antibody directed against mammalian Gal was performed on lizard stomach extracts. NADPH-d positive nerve cell bodies and fibres were found in the myenteric and submucous plexuses throughout the gastrointestinal tract of both reptiles. These nerve structures were also present in the other intramural nerve plexuses, although in smaller quantities. Both in lizard and snake, the stomach revealed a positive nerve population that was more dense than elsewhere in the gut. The population of the NADPH-d-positive neurons observed in the lizard was larger than that observed in the snake. The distribution of both populations was similar to those that have been described in the gut of several mammalian and non-mammalian vertebrates. Both in lizard and snake, a one-to-one correspondence was noted between NOS- and NADPH-d-containing nerve cell bodies, and the nitrergic neurons containing Gal appeared to be more numerous than those containing VIP. Western blot analysis recognised a single band with a molecular weight (3.4 kDa) very similar to that of porcine Gal. It is hypothesised that at least some of the nitrergic neurons of the lizard and snake gut are inhibitory motor neurons innervating the circular smooth musculature. In addition, the colocalization of NOS and VIP in neurons enhances their inhibitory action. The role of the neurons containing both NOS and Gal remains unknown.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0014-5793
    Keywords: FAD ; FMN ; L-Arginine ; Nitric oxide ; Reaction mechanism ; Tetrahydrobiopterin
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0044-2313
    Keywords: Cr carbonyl complexes of Tris(trimethylsilyl)heptaphosphanortricyclene; ; (Me3Si)3P7[Cr(CO)5]1-3; ; (Me3Si)3P7[Cr(CO)5][Cr(CO)4]; ; (Me3Si)3P7[Cr(CO)5]2 × [Cr(CO)4]; ; (Me3Si)3P7[Cr(CO)5]3[Cr(CO)4] ; Chemistry ; Inorganic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Description / Table of Contents: Formation and Structures of Chromium Carbonyl Complexes of Tris(trimethylsily)heptanortricyclane (Me3Si)3P7(Me3Si)3P7 1 reacts with one equivalent of Cr(Co)5THF 2 to give the yellow (Me3Si)3P7[Cr(Co)5]4. The Cr(Co)5group is attached to a Pe atom. Yellow (Me3Si)3P7[Cr(CO)5]2 5 is obtained either from reacting 1 with two equivalents of 2, or from 4 with one equivalent of 2. One Cr(CO)5 groups in 5 is coordinated to a Pe atom, the other one to a P,b atom. Similarly, Yellow (Me3Si)3P7[Cr(CO)5]3 6 results from reacting 5 with one equivalent of 2. Two Cr(CO)5 groups in 6 are linked to Pb atoms, and the third one either to a Pe or the Pa atom (assignment not completely clear).Derivatives containing a Pe bridge appear in reactions of 1 with higher amounts of 2. Such, 5 forms mixtures of the red compounds (Me3Si)3P7 × [Cr(CO)5]2[Cr(CO)4] 8 and (Me3Si)3P7[Cr(CO)5] × [Cr(CO)4] 9, and even preferably 9 with four equivalents of 2. In 8, one Cr(CO)5 group is attached to that pe atom which is not engaged in the Cr(CO)4 bridge, and the second to one of the Pb atoms directly adjacent to the bridge. The additional Cr(CO)5 group in 9 is coordinated to the remaining Pb atom directly adjacent to the bridge. In reactions of 5 with even higher amounts of 2, four Cr(CO)5 groups and one Cr(CO)4 bridge attach to the basic P7 skeleton to from the less stable Me3P7[Cr(CO)5]4[Cr(CO)4]. (Me3Si)3P7 1 reacts considerably slower with Cr(CO)5THF 2 than R3P7 (R = Et, iPr).Cr(CO)4NBD 3 reacts with 1, but it was not possible to isolate (Me3Si)3P7[Cr(CO)4]. However, 4 with 3 forms (Me3Si)3P7[Cr(CO)5][Cr(CO)4] 7, and 5 with 3 yields (Me3Si)3P7[Cr(CO)5]2[Cr(CO)4] 8.The structures of 4, 5, 7, 8 or 9 are quite analogous to those of the derivatives of Et3P7 but there exist significant differences in stability and reactivity. While Et3P7[Cr(CO)5]2 in solution rearranges to give the stable Et3P7[Cr(CO)5][Cr(CO)4], the analogous (Me3Si)3P7[Cr(CO)5][Cr(CO)4] 7 is not stable and is not obtained from (Me3Si)3P7[Cr(CO)5]2 5. Et3P7[Cr(CO)5]3 can just be detected spectroscopically and rearranges easily to give Et3P7[Cr(CO)5]2 [Cr(CO)4] whereas (Me3Si)3P7[Cr(CO)5]3 6 can be isolated. These differences are caused by the greater steric requirements of Me3Si groups. The formation of a Pe-Cr(CO)4-Pe bridge, e.g., requires a Me3Si group in 1 to switch from the s to the as position.Whereas many of the complex compounds of R3P7 (R = Et, iPr) crystallize easily, the analogous derivatives of (Me3Si)3P7 did not yield crystals. The structures of the products were assigned by evaluating the coordination shift in their 31P NMR spectra and by comparision of these spectra with those of such derivatives of Et3P7 which previously had been investigated by single crystal structure determinations.
    Notes: (Me3Si)3P7 1 bildet mit einem Mol Cr(CO)5THF2 (Me3Si)3P7[Cr(CO)5] 4 (gelb), in dem die Cr(CO)5-Gruppe an einem Pe-Atom gebunden ist. (Me3Si)3P7[Cr(CO5]2 5 (gelb) entsteht aus 1 mit zwei Mol Cr(CO)5THF 2 bzw. aus 4 mit einem Mol 2. In 5 ist eine Cr(CO)5-Gruppe an ein Pe-Atom, die zweite an ein Pb-Atom gebunden. (Me3Si)3P7[Cr(Co)5]3 6 (gelb) bildet sich aus 5 mit einem Mol 2. In 6 sind zwei Cr(CO)5-Gruppen an Pb-Atome gebunden, die dritte an das Pa- oder ein Pe-Atom (Zuordnung nicht eindeutig).Bei Umsetzungen von 1 mit höheren Molzahlen 2 bilden sich Derivate mit der Pe-Cr(CO)4-Pe-Brücke. So entstehen aus 5 mit zwei bzw. drei Äquivalenten 2 die roten Verbindungen (Me3Si)3P7[Cr(CO)5]2[Cr(Co)4] 8 und (Me3Si)3P7[Cr(Co)5]3[Cr(Co)4] 9, mit vier Äquivalenten 2 bevorzugt 9. In 8 verbrückt die Cr(Co)4- Gruppe zwei Pe- Atome. Eine Cr(Co)5-Gruppe ist an das dritte Pe- Atom Koordiniert, die zweite an ein Pb-Atom, das direkt mit dem Pe- Atom der Cr(Co)4-Brücke verbunden ist. 9 leitet sich von 8 ab durch Einführung einer weiteren Cr(Co)5-Gruppe an das zweite P6-Atom, das mit dem zweiten Pe-Atom an der Cr(Co)4-Brücke verbunden ist. Bei Umsetzungen von 5 mit noch höheren Molzahlen an 2 lagern sich an 1 insgesamt vier Cr(CO)5- und eine Cr(CO)4-Gruppe an unter Bildung einer weniger beständigen Verbindung (Me3Si)3P7[Cr(Co)5]4[Cr(CO)4]. (Me3Si)3P71 reagiert mit Cr(CO)5 THF 2 erheblich langsamer als R3P7 (R = Et, iPr).Die Umsetzung von 1 mit Cr(CO)4NBD 3 ermöglicht nicht die Isolierung von (Me3Si)3 P7[Cr(CO)4]. Jedoch bildet 3 mit (Me3Si)3P7[Cr(CO)5)] 4 (Me3Si)3P7[Cr(CO)5]× [Cr(CO)4] 7 und mit (Me3Si)3P7[Cr(CO)5]2 5 (Me3Si)3P7[Cr(CO)5]2[Cr(CO)4] 8.Die Verbindungen 4,5,7,8,9 entsprechen in ihrem Aufbau weitgehend den Derivaten des Et3P7, jedoch bestehen gravierende Unterschiede bezüglich Stabilität und Reaktivität. Während sich Et3P7[Cr(Co)5]2 in Lösung zum stabilen Et3P7[Cr(Co)5][Cr(Co)4] umlagert, ist das analoge (Me3Si)3P7[Cr(Co)5][Cr(Co)4] 7 instabil und wird nicht aus (Me3Si)3 P7[Cr(CO)5]2 5 gebildet. Et3P7[Cr(CO)5]3 ist nur spektroskopisch nachweisbar und lagert sich leicht um zum Et3P7[Cr(CO)5]2×[Cr(CO)4], während (Me3Si)3P7[Cr(CO)5]3 6 zu isolieren ist. Die Unterschiede sind durch den größeren Raumbedarf der Me3Si-Gruppe bedingt. So gehen die Me3Si- Gruppen am (Me3Si)3P7 bei Einführung der Pe-Cr(CO)4-Pe-Brücke aus ihrer s- in die as- Position über.Während die Komplexverbindungen des R3P7 (R = Et, iPr)teilweise gut kristallisieren, konnten von denen des (Me3Si)3P7 keine kristalle erhalten werden. Die Strukturen der Verbindungen wurden durch Auswertung der Koordinationsverschiebung im 31P-NMR Spektrum und durch Vergleich mit Spektren von - durch Kristallstrukturuntersuchung gesicherten - Derivaten des Et3P7 abgeleitet.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...