Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Nitrogen and photosynthesis  (2)
  • C3, C4 plants (H-isotope composition)  (1)
  • 1
    ISSN: 1432-2048
    Keywords: Chlorophyll fluorescence ; Growth rate ; Nitrogen and photosynthesis ; Photoacclimation ; Photoinhibition of photosynthesis ; Photosynthesis and N supply ; Quantum yield ; Ulva
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Clonal tissue of the marine chlorophyte macroalga, Ulva rotundata Blid., was transferred from 100 to 1700 μmol photons · m−2 · s−1 under limiting (1.5 μM NH 4 + maximum, N/P=2) and sufficient (15 μM NH 4 + maximum, N/P=20) nitrogen supply at 18° C and 11 h light-13 h darkness daily. Photoinhibition was assayed by light-response curves (photosynthetic O2 exchange), and chlorophyll fluorescence at 77 K and room temperature. Daily surface-area growth rate (μSA) in N-sufficient plants increased sixfold over 3 d and was sustained at that level. During this period, respiration (R d) doubled and light-saturated net photosynthesis capacity (P m) increased by nearly 50%, indicating acclimation to high light. Quantum yield (ϕ) decreased by 25% on the first day, but recovered completely within one week. The ratio of variable to maximum fluorescence (F v/F m) also decreased markedly on the first day, because of an increase in initial fluorescence (F o) and a decrease in F m, and partially recovered over several days. Under the added stress of N deficiency, μSA accelerated fivefold over 4 d, despite chronic photoinhibition, then declined along with tissue-N. Respiration doubled, but P m decreased by 50% over one week, indicating inability to acclimate to high light. Both ϕ and F v/F m decreased markedly on the first day and did not significantly recover. Changes in F o, F m and xanthophyll-cycle components indicate concurrent photodamage to photosystem II (PSII) and photoprotection by thermal deexcitation in the antenna pigments. Increasing μSA coincided with photoinhibition of PSII. Insufficient diel-carbon balance because of elevated R d and declining P m and tissue-N, rather than photochemical damage per se, was the apparent proximate cause of decelerating growth rate and subsequent tissue degeneration under N deficiency in U. rotundata.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Chlorophyll fluorescence ; Growth rate ; Nitrogen and photosynthesis ; Photoacclimation ; Photoinhibition of photosynthesis ; Photosynthesis and N supply ; Quantum yield ; Ulva
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Clonal tissue of the marine chlorophyte macroalga,Ulva rotundata Blid., was transferred from 100 to 1700 μmol photons · m−2 · s−1 under limiting (1.5 μM NH 4 + maximum, N/P=2) and sufficient (15 μM NH 4 + maximum, N/P=20) nitrogen supply at 18° C and 11 h light-13 h darkness daily. Photoinhibition was assayed by light-response curves (photosynthetic O2 exchange), and chlorophyll fluorescence at 77 K and room temperature. Daily surface-area growth rate (μSA) in N-sufficient plants increased sixfold over 3 d and was sustained at that level. During this period, respiration (R d) doubled and light-saturated net photosynthesis capacity (P m) increased by nearly 50%, indicating acclimation to high light. Quantum yield (ϕ) decreased by 25% on the first day, but recovered completely within one week. The ratio of variable to maximum fluorescence (F v/F m) also decreased markedly on the first day, because of an increase in initial fluorescence (F o) and a decrease inF m, and partially recovered over several days. Under the added stress ofN deficiency, μSA accelerated fivefold over 4 d, despite chronic photoinhibition, then declined along with tissue-N. Respiration doubled, butP m decreased by 50% over one week, indicating inability to acclimate to high light. Bothϕ andF v/F m decreased markedly on the first day and did not significantly recover. Changes inF o,F m and xanthophyll-cycle components indicate concurrent photodamage to photosystem II (PSII) and photoprotection by thermal deexcitation in the antenna pigments. Increasing μSA coincided with photoinhibition of PSII. Insufficient diel-carbon balance because of elevatedR d and decliningP m and tissue-N, rather than photochemical damage per se, was the apparent proximate cause of decelerating growth rate and subsequent tissue degeneration under N deficiency inU. rotundata.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2048
    Keywords: C3, C4 plants (H-isotope composition) ; Deuterium ; Hydrogen-isotope composition ; Leaf (H-isotope composition)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The natural abundance hydrogen-isotope composition of leaf water ( $$\delta _{\text{D}}^{{\text{H}}_{\text{2}} {\text{O}}} $$ ) and leaf organic matter (δ D org ) was measured in leaves of C3 and C4 dicotyledons and monocotyledons. The $$\delta _{\text{D}}^{{\text{H}}_{\text{2}} {\text{O}}} $$ value of leaf water showed a marked diurnal variation, greatest enrichment being observed about midday. However, this variation was greater in the more slowly transpiring C4 plants than in C3 plants under comparable environmental conditions. A model based on analogies with a constant feed pan of evaporating water was developed and the difference between C3 and C4 plants expressed in terms of either differences in kinetic enrichment or different leaf morphology. Microclimatic and morphological features of the leaves which may be associated with this factor are discussed. There was no daily excursion in the δ D org value in leaves of either C3 or C4 plants. When δ D org values were referenced to the mean $$\delta _{\text{D}}^{{\text{H}}_{\text{2}} {\text{O}}} $$ values during the period of active photosynthesis, the discrimination against deuterium during photosynthetic metabolism (ΔD) was greater in C3 plants (-117 to -121‰) than in C4 plants (-86 to -109‰). These results show that the different water use “strategies” of C3 and C4 plants are responsible for the measured difference in deuterium-isotope composition of leaf water. However, it is unlikely that these physical processes account fully for the differences in hydrogen-isotope composition of the products of C3 and C4 photosynthetic metabolism.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...