Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1912
    Keywords: Histamine H3 receptors ; Intraneuronal Ca2+ concentration ; Voltage-sensitive K+ channels ; ATP-dependent K+ channels ; G proteins ; Adenylate cyclase ; Noradrenaline release ; Mouse brain cortex
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The present study was aimed at the identification of mechanisms following the activation of histamine H3 receptors. Mouse brain cortex slices preincubated with 3H-noradrenaline were superfused and the (H3 receptor-mediated) effect of histamine on the electrically evoked tritium overflow was studied under a variety of conditions. The extent of inhibition produced by histamine was inversely related to the frequency of stimulation used to evoke tritium overflow and to the Ca2+ concentration in the superfusion medium. An activator (levcromakalim) and blocker (glibenclamide) of ATP-dependent K+ channels did not affect the electrically evoked tritium overflow and its inhibition by histamine. A blocker of voltage-sensitive K+ channels, tetraethylammonium (TEA), increased the evoked overflow and attenuated the inhibitory effect of histamine. TEA also reduced the inhibitory effect of noradrenaline and prostaglandin E2 on the evoked overflow. When the facilitatory effect of TEA on the evoked overflow was compensated for by reducing the Ca 2+ concentration in the superfusion medium, TEA did no longer attenuate the effect of histamine. Exposure of the slices to the SH group-alkylating agent N-ethylmaleimide increased the evoked overflow and attenuated the inhibitory effect of histamine; both effects were counteracted by the SH group-protecting agent dithiothreitol, which, by itself, did not affect the evoked overflow and its inhibition by histamine. Mouse brain cortex membranes were used to study the effect of the H3 receptor agonist R-(−)α-methylhistamine on the basal cAMP accumulation and on the accumulation stimulated by forskolin or noradrenaline. R-(−)-α-Methylhistamine did not affect basal cAMP accumulation but, at high concentrations, inhibited the forskolin- and noradrenaline-stimulated cAMP accumulation. S-(+)-α-Methylhistamine (which is 100 times less potent than R-(−)-α-methylhistamine at H3 receptors) was equipotent with the R-(−)-enantiomer in inhibiting the forskolin-stimulated CAMP accumulation. The inhibition by R-(−)-α-methylhistamine was not affected by the H3 receptor antagonist clobenpropit but was counteracted by the α2-adrenoceptor antagonist rauwolscine. The present results suggest that the histamine-induced inhibition of noradrenaline release depends on the availability of extracellular Ca2+ ions for stimulus-release coupling; in particular, a decrease in Ca 2+ influx into the varicosities may contribute to this inhibition. The H3 receptors (which may be coupled to a G protein) do not appear to be coupled to adenylate cyclase, to ATP-dependent K+ channels or to (TEA-sensitive) voltage-regulated K+ channels. α-Methylhistamine, in addition to its main action as a stereoselective H3 receptor agonist, proved to be weakly potent as an α2-adrenoceptor agonist.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1912
    Keywords: 1-(m-Chlorophenyl)-biguanide ; 2-Methyl5-hydroxytryptamine ; 5-Carboxamidotryptamine ; 5-HT3 receptors ; α2-Adrenoceptors ; Noradrenaline release ; 3H-Rauwolscine binding ; Rodent brain
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We analyzed the facilitatory effect of the 5-HT3 receptor agonist 1-(m-chlorophenyl)-biguanide (mCPBG) on the electrically evoked noradrenaline release in superfused mouse brain tissue. In addition, we determined the affinities of mCPBG and two other 5-HT receptor ligands, namely, 2-methyl-5-hydroxytryptamine (2-methyl-5-HT; also a 5-HT3 receptor agonist) and 5-carboxamidotryptamine (5-CT; a 5-HT1 receptor agonist) for α2 binding sites. The latter two 5-HT receptor agonists were included because of the claimed involvement of α2-adrenoceptors in their effects on noradrenaline release. In superfusion experiments on mouse brain cortex slices preincubated with 3H-noradrenaline, tritium overflow evoked by 2-min periods of electrical field stimula tion (3 Hz) was facilitated by mCPBG and, in addition, by rauwolscine (α2-adrenoceptor antagonist) and tetraethylammonium (K+ channel blocker) (which were examined for comparison). The effect of mCPBG was not affected by the 5-HT3 receptor antagonist tropisetron or by desipramine but was abolished by rauwolscine. In slices superfused with medium containing desipramine, the concentration-response curve of unlabelled noradrenaline for its inhibitory effect on the electrically (0.3 Hz) evoked overflow was shifted to the right by mCPBG and rauwolscine (apparent pA2 5.35 and 7.88, respectively). In another series of superfusion experiments, 4 electrical pulses, administered at 100 Hz, were used to evoke tritium overflow. Tritium overflow evoked by this stimulation procedure (under which an endogenous tone of noradrenaline does not develop) was not affected by mCPBG and rauwolscine but still increased by tetraethylammonium. The specific binding of 3H-rauwolscine to rat brain cortex homogenates was displaced monophasically by unlabelled rauwolscine, mCPBG, 2-methyl-5-HT and 5-CT (pKi 8.59, 5.84, 5.05 and 5.86, respectively). In conclusion the present results indicate that mCPBG acts as a low-affinity antagonist at α2-adrenoceptors. This property has to be considered in functional studies of 5-HT3 receptor-mediated effects in tissues containing α2-adrenoceptors as well.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...