Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical chemistry accounts 99 (1998), S. 44-52 
    ISSN: 1432-2234
    Keywords: Key words: Quantum similarity ; Similarity measures and indices ; One-electron density ; Intracule and extracule densities ; Molecular alignment
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract. The calculation of quantum similarity measures from second-order density functions contracted to intracule and extracule densities obtained at the Hartree-Fock level is presented and applied to a series of atoms, (He, Li, Be, and Ne), isoelectronic molecules (C2H2, HCN, CNH, CO, and N2), and model hydrogen-transfer processes (H2/H+, H2/Hot, H2/H−). Second-order quantum similarity measures and indices are found to be suitable measures for quantitatively analyzing electron-pair density reorganizations in atoms, molecules, and chemical processes. For the molecular series, a comparative analysis between the topology of pairwise similarity functions as computed from one-electron, intracule, and extracule densities is carried out and the assignment of each particular local similarity maximum to a molecular alignment discussed. In the comparative study of the three hydrogen-transfer reactions considered, second-order quantum similarity indices are found to be more sensitive than first-order indices for analyzing the electron-density reorganization between the reactant complex and the transition state, thus providing additional insights for a better understanding of the mechanistic aspects of each process.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...