Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0630
    Keywords: PACS: 68.55; 81.15 Z
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract. High-quality epitaxial CeO2 thin films were obtained on Si(001) buffered with a yttria-stabilised zirconia layer by pulsed laser deposition. Although the best structural properties were achieved at high substrate temperature, high-quality epitaxy was obtained even at room temperature. Epitaxial growth at low temperature is promoted by the high kinetic energy of particles reaching the substrate. The oxygen pressure and target–substrate distance had a strong influence on the crystallographic structure and surface morphology in low-temperature deposition. This behaviour is attributed to a change in the kinetic energy of the particles, which was evaluated from the plasma expansion velocity determined by an intensified CCD camera. If a shock wave forms, a minimum substrate temperature of 550 °C is necessary for epitaxial growth.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0630
    Keywords: PACS: 68.55; 81.15 Z
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: 2 (001) epitaxial thin films deposited on Si(001) with yttria-stabilized zirconia buffers have been obtained for the first time at room temperature by pulsed-laser deposition. The influence of oxygen pressure on the crystal quality of CeO2 was studied for the films deposited at 100 °C. The rocking curve full width at half maximum of the CeO2(002) peak for films deposited at room temperature and 100 °C was between 1° and 2°, for oxygen pressures below 3×10-2 mbar. The best crystal quality was obtained at around 3×10-3 mbar. Epitaxial growth at room temperature was confirmed by cross-sectional transmission electron microscopy. Scanning electron microscopy and atomic force microscopy revealed very smooth surfaces for oxygen pressure below 3×10-2 mbar, with rms roughness values around 0.3 nm over 5 μm×5 μm.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Bioluminescence and Chemiluminescence 10 (1995), S. 175-184 
    ISSN: 0884-3996
    Keywords: Luminol ; enhanced chemiluminescence ; phenolic acid ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: We explored the behaviour of a series of phenolic acids used as enhancers or inhibitors of luminol chemiluminescence by three different methods to determine if behaviour was associated with phenolic acid structure and redox character. All the phenolic acids inhibited chemiluminescence when hexacyanoferrate(III) was reacted with the phenolic acids before adding luminol. The redox character of these compounds was clearly related to structure. When hexacyanoferrate(III)-luminol-O2 chemiluminescence was initiated by phenolic acid-luminol mixtures some phenolic acids behaved as enhancers of chemiluminescence, and others as inhibitors. We propose a mechanism to explain these findings. We found direct relationships between the redox character of the phenolic acids and the enhancement or inhibition of the chemiluminescence of the luminol-H2O2-peroxidase system and we propose mechanism to explain these phenomena.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Bioluminescence and Chemiluminescence 13 (1998), S. 75-84 
    ISSN: 0884-3996
    Keywords: luminol ; enhanced chemiluminescence ; phenol ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Systematic studies on phenol derivatives facilitates an explanation of the enhancement or inhibition of the luminol-H2O2-horseradish peroxidase system chemiluminescence. Factors that govern the enhancement are the one-electron reduction potentials of the phenoxy radicals (PhO•/PhOH) vs. luminol radicals (L•/LH-) and the reaction rates of the phenol derivatives with the compounds of horseradish peroxidase (HRP-I and HRP-II). Only compounds with radicals with a similar or greater reduction potential than luminol at pH 8.5 (0.8 V) can act as enhancers. Radicals with reduction potentials lower than luminol behave in a different way, because they destroy luminol radicals and inhibit chemiluminescence. The relations between the reduction potential, reaction rates and the Hammett constant of the substituent in a phenol suggest that 4-substituted phenols with Hammett constants (σ) for their substituents similar or greater than 0.20 are enhancers of the luminol-H2O2-horseradish peroxidase chemiluminescence. In contrast, those phenols substituted in position 4 for substituents with Hammett constants (σ) lower than 0.20 are inhibitors of chemiluminescence. On the basis of these studies, the structure of possible new enhancers was predicted. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...