Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PACS. 71.27.+a Strongly correlated electron systems; heavy fermions - 75.40.Mg Numerical simulation studies  (1)
  • 1
    ISSN: 1434-6036
    Keywords: PACS. 71.27.+a Strongly correlated electron systems; heavy fermions - 75.40.Mg Numerical simulation studies
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract: Specific heat (CV) measurements in the spin-1/2 Cu2(C2H12N2)2Cl4 system under a magnetic field up to H =8.25 T are reported and compared to the results of numerical calculations based on the 2-leg antiferromagnetic Heisenberg ladder. While the temperature dependences of both the susceptibility and the low-field specific heat are accurately reproduced by this model, deviations are observed above the critical field HC1 at which the spin gap closes. In this Quantum High Field phase, the contribution of the low-energy quantum fluctuations are stronger than in the Heisenberg ladder model. We argue that this enhancement can be attributed to dynamical lattice fluctuations. Finally, we show that such a Heisenberg ladder, for H 〉 H C1, is unstable, when coupled to the 3D lattice, against a lattice distortion. These results provide an alternative explanation for the observed low temperature ( K-0.8 K) phase (previously interpreted as a 3D magnetic ordering) as a new type of incommensurate gapped state.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...