Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Archives of microbiology 166 (1996), S. 379-387 
    ISSN: 1432-072X
    Schlagwort(e): Dehalospirillum multivorans ; Reductive dechlorination ; Tetrachloroethene respiration ; Trichloroethene ; PCE dehalogenase ; Formate dehydrogenase ; Fumarate respiration ; Hydrogenase ; Electron transport chain ; Reversed electron flow ; Ferredoxin ; Menaquinone
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract Tetrachloroethene (PCE) respiration was studied in the tetrachloroethene-utilizing anaerobe,Dehalospirillum multivorans, with respect to localization of the catabolic enzymes, the electron carriers potentially involved in electron transport, and the response to ionophores and specific inhibitors. Hydrogenase and formate dehydrogenase were recovered in the periplasmic cell fraction and were membrane-associated. Electron-accepting tetrachloroethene dehalogenase was found in the cytoplasmic fraction. In the PCE dehalogenase assay, only artificial electron donors with a standard redox potential of 〈-360 mV were effective electron donors for PCE reduction. Besides these artificial reductants, ferredoxin isolated fromD. multivorans (E′o=-445 mV) could serve as electron donor for PCE reduction. However, the reaction rate with ferredoxin was only 1% of that with methyl viologen, whereas the pyruvate-ferredoxin oxidoreductase exhibited almost the same reaction rates with methyl viologen and ferredoxin as electron acceptors for pyruvate oxidation. Reduced menadione (2-methyl-1,4-naphthoquinone) did not serve as electron donor in the PCE dehalogenase reaction. 2-Heptyl-4-hydroxyquinoline-N-oxide (HOQNO) had no significant effect on PCE dechlorination in cell suspensions and in crude extracts. Whole cells catalyzed the reductive dechlorination of PCE with H2 or formate as electron donors. The dechlorination in cell suspensions rather than in cell extracts was inhibited by the ionophores carbonylcyanide-p-(trifluoromethoxy)-phenylhydrazone (FCCP) and tetrachlorosalicylanilide (TCS), indicating that a membrane potential and/or a pH gradient may be required for the reaction in vivo.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Archives of microbiology 163 (1995), S. 276-281 
    ISSN: 1432-072X
    Schlagwort(e): Tetrachloroethene ; Trichloroethene ; Dichloroethene ; PCE dehalogenase ; TCE dehalogenase ; Corrinoid ; Vitamin B12 ; Dehalospirillum multivorans ; Reductive dechlorination ; Tetrachloroethene respiration
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract Some properties of tetrachloroethene and trichloroethene dehalogenase of the recently isolated, tetrachloroethene-utilizing anaerobe, Dehalospirillum multivorans, were studied with extracts of cells grown on pyruvate plus fumarate. The dehalogenase catalyzed the oxidation of reduced methyl viologen with tetrachloroethene (PCE) or trichloroethene (TCE) as electron acceptor. All other artificial or physiological electron donors tested were ineffective. The PCE and TCE dehalogenase activity was insensitive towards oxygen in crude extracts. When extracts were incubated under anoxic conditions in the presence of titanium citrate as reducing agent, the dehalogenase was rapidly inactivated by propyl iodide (50 μM). Inactivation did not occur in the absence of titanium citrate. The activity of propyl-iodide-treated extracts was restored almost immediately by illumination. The dehalogenase was inhibited by cyanide. The inhibition profile was almost the same under oxic and anoxic conditions independent of the presence or absence of titanium citrate. In addition, N2O, nitrite, and ethylene diamine tetra-acetate (EDTA) were inhibitors of PCE and TCE dehalogenase. Carbon monoxide and azide had no influence on the dehalogenase activity. Trans-1,2-dichloroethene or 1,1-dichloroethene, both of which are isomers of the dechlorination product cis-1,2-dichloroethene, neither inhibited nor inactivated the dehalogenase. PCE and TCE dechlorination appeared to be mediated by the same enzyme since the inhibitors tested had nearly the same effects on the PCE and TCE dehalogenating activity. The data indicated the involvement of a corrinoid and possibly of an additional transition metal in reductive PCE and TCE dechlorination.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...