Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-8838
    Keywords: mechanical alloying ; PEFC ; PEM fuel cell ; process control agent ; Pt–Ru alloy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Notes: Abstract Ball-milling has been used to prepare performing CO tolerant polymer electrolyte fuel cell anode catalysts that contain Pt and Ru. The catalyst precursors are obtained by milling together Pt, Ru and a dispersing agent in the atomic ratio 0.5, 0.5 and 4.0. This precursor is not easily recovered after milling because it sticks to the walls of the vial and on the grinding balls. However, the precursor is recovered as a powder when a process control agent (PCA) is added during the milling step. Various PCAs have been used. The PCA should not interfere with the electrocatalytic activity of the catalysts obtained by leaching the precursor. The best preparation of catalyst precursors are obtained by milling: (i) Pt, Ru and Al (dispersing agent) in the atomic ratio 0.5, 0.5, 4.0 + 10 wt% NaF (PCA) or (ii) Pt , Ru and MgH2 in the 0.5, 0.5, 4.0 atomic or molecular ratio. In this case, MgH2 plays at the same time the role of a dispersing agent and that of a PCA. The catalysts are obtained by leaching Al and NaF in (i) or MgH2 in (ii). The CO tolerance of these catalysts is equivalent to that of Pt0.5Ru0.5 Black from Johnson Matthey. The ball-milled catalysts have a surface area comprised between 30 and 44 m2 g−1. As-prepared catalysts are mainly made of metallic Pt and metallic plus oxidized Ru. After fuel cell tests, Pt is completely metallic while the oxidized Ru content decreases but does not disappear. These catalysts are composed of particles with crystallites of two different sizes: in (i) nanocrystallites (∼4 nm) that contain essentially Pt alloyed with Al and perhaps some Ru, and larger (≥∼30 nm) crystallites that contain essentially Ru; in (ii) Pt nanocrystalline particles that may contain some Ru and larger particles that contain essentially either Ru or Pt.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-8838
    Keywords: anode ; nanocrystalline ; PEFC ; PEM fuel cell ; Pt–Ru alloy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Notes: Abstract High energy ball milling, an industrially amenable technique, has been used to produce CO tolerant unsupported Pt–Ru based catalysts for the oxidation of hydrogen in polymer electrolyte fuel cells. Nanocrystalline Pt0.5–Ru0.5 alloys are easily obtained by ball-milling but their performances as anode catalysts are poor because nanocrystals composing the material aggregate during milling into larger particles. The result is a low specific area material. Improved specific areas were obtained by milling together Pt, Ru and a metal leacheable after the milling step. The best results were obtained by milling Pt, Ru, and Al in a 1:1:8 atomic ratio. After leaching Al, this catalyst (Pt0.5–Ru0.5 (Al4)) displays a specific area of 38 m2g−1. Pt0.5–Ru0.5 (Al4) is a composite catalyst. It consists of two components: (i) small crystallites (∼4 nm) of a Pt–Al solid solution (1–3 Al wt%) of low Ru content, and (ii) larger Ru crystallites. It shows hydrogen oxidation performance and CO tolerance equivalent to those of Pt0.5–Ru0.5 Black from Johnson Matthey, the commercial catalyst which was found to be the most CO tolerant one in this study.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 274 (1972), S. 229-237 
    ISSN: 1432-1912
    Keywords: Rat Folic Acid Reductase ; Pregnancy ; Fetus ; Newborns ; Trimethoprim
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The folic acid reductase activity in various organs of adult rats was studied in comparison to pregnant females (20th day of gestation) and fetal rats. The enzyme activities in the tissues of pregnant rats were in general about 30% higher than in normal adults. Fetal rats also possess the ability to catalyze the reduction of dihydrofolic acid, but it is evident that the liver and kidney have a considerably reduced capacity to form tetrahydrofolate. The folic acid reductase activity in liver and kidney rises for 10 days after birth and then declines to normal enzyme levels by the 4th week of life. Further studies concerning the interaction between trimethoprim and folic acid reductase in adult rats demonstrate that an oral dose of 5 or 50 mg/kg results in about a 30% increase of folic acid reductase activity in liver and kidney. The experiments suggest that there is a stimulation of enzyme synthesis following trimethoprim administration; because, the trimethoprim induced increase of the reductase activity is blocked by the administration of either puromycin or actinomycin D.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 278 (1973), S. 227-230 
    ISSN: 1432-1912
    Keywords: Trimethoprim ; Rat Folic Acid Reductase ; Pregnancy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The increased level of folic acid reductase activity in rats during the perinatal period is inhibited following the oral administration of 5 or 50 mg/kg Trimethoprim. When the enzyme activity was tested in vitro, the highest sensitivity to the antimetabolite was displayed by the liver reductase isolated from rats the 20th day of pregnancy, the lowest was observed in the foetal liver extract. It is proposed that the stimulated reductase activity during the pregnancy is caused by a newly synthesized, Trimethoprim-sensitive enzyme form. The results of the in vitro experiments could contribute to the suggested hypothesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...