Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 121 (1979), S. 37-41 
    ISSN: 1432-072X
    Keywords: Basidiomycete ; Basidiospores ; Fruit body ; Hymenium ; Catabolite repression ; Nitrogen repression ; cAMP ; Phanerochaete chrysosporium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In Phanerochaete chrysosporium fruit body formations is subject to strong catabolite repression by glucose in the presence of physiological levels of nitrogen. Walseth cellulose was found to be the best source of carbon for the induction of fruit body and consequent basidiospore synthesis. Ejected basidiospores collected from cultures grown under these conditions for two weeks are contaminated with neither conidia nor mycelial fragments and are therefore suitable for genetic analysis of recombination. Under conditions of nitrogen limitation, the glucose catabolite repression of fruit body synthesis was relieved. Exogenous adenosine 3′,5′-monophosphate but not other related nucleotides, also relieved glucose catabolite repression of fruit body formation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Phanerochaete chrysosporium ; Lignin degradation ; Veratryl alcohol ; Secondary metabolism ; Mutants ; Phenol oxidase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A pleiotropic mutant of Phanerochaete chrysosporium 104-2 lacking phenol oxidase and unable to form fruit bodies and a revertant strain 424-2 were isolated after UV mutagenesis. Strains 104-2 and 424-2 had no apparent dysfunction in primary metabolism with glucose as a carbon source. Unlike the wild type strain and strain 424-2, strain 104-2 was unable to evolve 14CO2 from 14C ring, side chain and 3-O-14C-methoxy labeled lignin. In addition, strain 104-2 was unable to evolve 14CO2 from a variety of lignin model compounds including 14C-4′-methoxy labeled veratrylglycerol-β-guaiacyl (V) ether, γ-14C-guaiacylglycerol-β-guaiacyl ether (VI), as well as 1-(14C-4′-methoxy, 3′-methoxyphenyl)1,2 propene (III) and 1-(14C-4′-methoxy-3′-methoxyphenyl) 1,2 dihydroxypropane (IV). The addition of peroxidase/H2O2 to cultures of strain 104-2 did not alter its capacity to degrade the labeled lignins. A variety of unlabeled lignin model compounds previously shown to be degraded by the wild type organism including β-aryl ether dimers and diaryl propane dimers were also not degraded by the mutant 104-2. The revertant strain 424-2 regained the capacity to degrade these compounds. The substrates described are degraded by oxygen requiring system(s) expressed during the secondary phase of growth, suggesting this pleiotropic mutant is possibly defective in the onset of postprimary metabolism. The inability of the mutant to produce the secondary metabolite veratryl alcohol and to elaborate enzymes in the veratryl alcohol biosynthetic pathway supports this hypothesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-072X
    Keywords: Phanerochaete chrysosporium ; Lignin model compounds ; β-Aryl ether dimers ; Metabolism ; Methoxyhydroquinone ; Alkyl-phenyl cleavage
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The white rot basidiomycete Phanerochaete chrysosporium metabolized guaiacylglycol-β-guaiacyl ether (I) in high nitrogen, shaking and stationary cultures. 2-(o-Methoxyphenoxy) ethanol (X), 2-(o-methoxyphenoxy) acetic acid (IX) and methoxy-phydroquinone (MHQ) were identified as products of the metabolism of (I). P. chrysosporium also metabolized guaiacylglycerol-β-guaiacyl ether (IV) in high nitrogen stationary cultures. 2-(o-Methoxyphenoxy)-1,3 propanediol (XII) and 3-hydroxy, 2-(o-methoxy-phenyxy) propionic acid (XIV) were identified as products of the metabolism of (IV). Finally, P. chrysosporium metabolized α-deoxyguaiacylglycol-β-guaiacyl ether (VI) and α-deoxyguaiacylglycerol-β-guaiacyl ether (VII) in limiting nitrogen cultures. 2-(o-Methoxyphenoxy) ethanol (X) and 2-(o-methoxyphenoxy)-1,3 propanediol (XII) were identified as products of the metabolism of VI and VII respectively indicating α hydroxylation of those substrates with subsequent alkyl-phenyl bond cleavage. Metabolites were identified after comparison with chemically synthesized standards by GLC-mass spectrometry.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-072X
    Keywords: Phanerochaete chrysosporium ; Lignin model compounds ; Lignin metabolism ; β-aryl ether dimers ; β-ether cleavage
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The white rot basidiomycete Phanerochaete chrysosporium metabolized 4-ethoxy-3-methoxyphenyl-glycerol-β-guaiacyl ether (V) in low nitrogen, stationary cultures under which conditions the ligninolytic enzyme system is expressed. 4-Ethoxy-3-methoxyphenylglycerol XIII, guaicol and 4-ethoxy-3-methoxybenzyl alcohol (II) were isolated as metabolic products. Exogenously added XIII was rapidly converted to 4-ethoxy-3-methoxybenzyl alcohol indicating that it is an intermediate in the metabolism of V. P. chrysosporium also metabolized 1-(4′-ethoxy-3′-methoxyphenyl)-2-(2″-methoxyphenoxy)-3-hydroxypropane VI. The degradation pathway for this dimer also included initial β-ether cleavage and α-hydroxylation of the diol product 1-(4′-ethoxy-3′-methoxyphenyl) 2,3 dihydroxypropane (XI) to yield the triol XIII which was cleaved at the α, β bond to yield 4-ethoxy-3-methoxybenzyl alcohol. Finally P. chrysosporium also cleaved the dimer 1-(4′-ethoxy-3′-methoxyphenyl)-2-(2″-methoxyphenoxy)-1-hydroxypropane (VIII) at the β-ether linkage yielding 1-(4′-ethoxy-3′-methoxyphenyl) 1,2 dihydroxypropane (IX) which was subsequently cleaved at the α, β bond to yield II. All of the results indicate that oxidative β-ether cleavage is an important initial reaction in the metabolism of β-aryl ether lignin substructure dimeric compounds. Metabolities were identified after comparison with chemically synthesized standards by gas liquid chromatography-mass spectrometry.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-072X
    Keywords: Phanerochaete chrysosporium ; Lignin model compounds ; β-aryl ether dimers ; Metabolism αβ cleavage ; Veratryl alcohol ; 4-ethoxy-3-methoxybenzyl alcohol ; Alkyl-phenyl cleavage
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The white rot fungus Phanerochaete chrysosporium metabolized the lignin model compounds veratylglycerol-β-guaiacyl ether I and 4-ethoxy-3-methoxy-phenylglycerol-β-guaiacyl ether V in stationary culture under an atmosphere of 100% oxygen and under nitrogen limiting conditions. 2-(o-methoxyphenoxy)-ethanol VII was identified as a product of the metabolism of both substrates. Veratryl alcohol and 4-ethoxy-3-methoxybenzyl alcohol IV were identified as metabolites of I and V respectively. Metabolites were identified after comparison with chemically synthesized standards by mass spectrometry. These results indicate the existence of an enzyme system capable of directly cleaving the etherated dimers I and V at the α, β bond. The additional identification of 2-(o-methoxyphenoxy)-1,3 propanediol IX as a metabolic product indicates that cleavage of the alkyl-phenyl bond of these dimers or their metabolites also occurs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 123 (1979), S. 319-321 
    ISSN: 1432-072X
    Keywords: Basidiomycete ; Vanillic acid ; Vanillate hydroxylase ; Monooxygenase ; Methoxy-p-hydroquinone ; Lignin biodegradation ; Phanerochaete chrysosporium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A soluble enzyme fraction from Phanerochaete chrysosporium catalyzed the oxidative decarboxylation of vanillic acid to methoxy-p-hydroquinone. The enzyme, partially purified by ammonium sulfate precipitation, required NADPH and molecular oxygen for activity. NADH was not effective. Optimal activity was displayed between pH 7.5–8.5. Neither EDTA, KCN, NaN3, nor o-phenanthroline (5 mM) were inhibitory. The enzyme was inducible with maximal activity displayed after incubation of previously grown cells with 0.1% vanillate for 30h.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-072X
    Keywords: Phanerochaete chrysosporium ; Lignin model compounds ; Lignin degradation ; Diarylpropane ; α,β cleavage ; Anisyl alcohol ; Lignin ; Basidiomycete
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The white rot basidiomycete Phanerochaete chrysosporium metabolized 1-(3′,4′-diethoxyphenyl)-1,3(dihydroxy)-2-(4′'-methoxyphenyl)-propane (XII) in low nitrogen stationary cultures, conditions under which the ligninolytic enzyme system is expressed. 3,4-Diethoxybenzyl alcohol (IV), 1,2(dihydroxy)-1-(4′-methoxyphenyl)ethane (XX) and anisyl alcohol were isolated as metabolic products indicating an initial α, β bond cleavage of this dimer. Exogenously added XX was rapidly converted to anisyl alcohol, indicating that XX is an intermediate in the metabolism of XII. Fungal cleavage of the α, β bond of 1-(3′-4′-diethoxyphenyl)-1-(hydroxy)-2-(4′'-methoxyphenyl)ethane (XI) also occurred, indicating that a γ hydroxymethyl group is not a prerequisite for this reaction. P. chrysosporium also metabolized 1-(4′-ethoxy-3′-methoxyphenyl)-2,2(dihydroxy)-2-(4′'-methoxyphenyl)propane-1-ol (XIII). The major products of the degradation of this triol included 4-ethoxy-3-methoxybenzyl alcohol (III) and 2-hydroxy-1-(4′-methoxyphenyl)-1-oxoethane (XXI). The nature of the products formed indicates that this triol is also cleaved directly at the α,β bond. The significant difference in the nature of the products formed from the diaryl propane (XII) and the triol (XIII), however, suggests that XIII is not an intermediate in the major pathway for the degradation of XII. Metabolites were identified after comparison with chemically synthesized standards by GLC-mass spectrometry.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-072X
    Keywords: Phanerochaete chrysosporium ; Vicinal diol cleavage ; Lignin model compounds ; Dihydroanisoin ; Anlsyl alcohol ; White rot basidiomycete ; Anisaldehyde ; Cytochrome P-450 ; Activated oxygen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The white rot basidiomycete Phanerochaete chrysosporium metabolized dihydroanisoin (1,2-dianisylethane-1,2 diol) in low nitrogen stationary cultures, conditions under which the ligninolytic system is expressed. Anisyl alcohol was isolated as a metabolic product indicating an initial diol bond cleavage of the substrate. Use of 3H-labeled dihydroanisoin (1,2-dianisylethane-1,2-diol-1,2 3H) indicated that the diol bond was cleaved directly, yielding anisyl aldehyde as the initial product. The metabolically stable ketol anisoin was shown not be an intermediate in the metabolism of dihydroanisoin. The diol cleavage reaction was dependent on the concentration of molecular oxygen but O2 could be replaced by H2O2 under some conditions. The cleavage reaction was inhibited by exogenously-added tyrosine2-Cu2+ complex (TCC). The appearance of the fungal diol cleavage system parallels the appearance of the ligninolytic system under a variety of physiological conditions. In addition, preincubation of ligninolytic cultures with 2.5 mM l-glutamate represses both the ligninolytic and the diol cleavage activities.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-0983
    Keywords: Phanerochaete chrysosporium ; DNA transformation ; Basidiomycete ; Adenine biosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A clone containing the Phanerochaete chrysosporium ade1 gene was isolated from a λEMBL3 genomic library using the ade5 gene encoding aminoimidazole ribonucleotide synthetase, from Schizophyllum commune, as a probe. A 6.0 kb fragment incorporating the ade1 gene was subcloned into pUC18 (pADE1) and used to transform the P. chrysosporium ade1 auxotrophic strain. Transformation frequencies were similar to those obtained previously with the S. commune ade5 gene; however, homologous transformants arose earlier than heterologous transformants. The transformants were mitotically and meiotically stable and Southern blot analysis indicated that the plasmid, pADE1, integrated ectopically in single or multiple copies. The pADE1 insert was mapped for restriction sites and the approximate location of the ade1 gene within the insert was determined.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-0983
    Keywords: Phanerochaete chrysosporium ; Transformation ; Heterologous expression ; Basidiomycetes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Protoplasted basidiospores of two different adenine auxotrophs of the lignin-degrading basidiomycete Phanerochaete chrysosporium were transformed to prototrophy using plasmids containing genes encoding adenine biosynthetic enzymes from Schizophyllum commune. Fragments containing these genes were subcloned into pUC18 and P. chrysosporium transformants obtained with these subclones were analyzed. The subclones were mapped for restriction sites and the approximate locations of the complementing genes were determined. One of these plasmids was used to transform the Neurospora crassa auxotrophic strain ade2, thereby identifying the S. commune ade5 biosynthetic gene as encoding phosphoribosylaminoimidazole synthetase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...