Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Cucurbita (phloem lectin) ; Lectin (localisation) ; Phloem ; P-protein ; Sieve element
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Antibodies were raised against lectin purified from the sieve-tube exudate of Cucurbita maxima. Immunocytochemistry, using peroxidase-labelled antibodies and Protein A-colloidal gold, was employed to determine the location of the lectin within the tissues and cells of C. maxima and other cucurbit species. The anti-lectin antibodies bound to P-protein aggregates in sieve elements and companion cells, predominantly in the extrafascicular phloem of C. maxima. This may reflect the low rate of translocation in these cells. Under the electron microscope, the lectin was shown to be a component of P-protein filaments and was also found in association with the sieve-tube reticulum which lines the plasmalemma. The anti-lectin antibodies reacted with sieve-tube proteins from other species of the genus Cucurbita but showed only limited reaction with other genera. We suggest that the lectin serves to anchor P-protein filaments and associated proteins to the parietal layer of sieve elements.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Planta 143 (1978), S. 191-205 
    ISSN: 1432-2048
    Keywords: Brownian motion ; Freeze-etching ; Nymphoides ; Phloem ; P. protein ; Sieve pores ; Translocation (phloem)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Intact vascular bundles from Nymphoides peltata (S.G. Gmel.) O. Kuntze, shown to have translocated carbon-14, were freeze-fractured and etched for electron microscopy. The interpretation of freezefractured and etched sieve pores and P-protein filaments seen in them is discussed. The entire widths of most of the sieve pores seen contained filaments separated by less than 100 nm. Their arrangement indicates too high a resistance to flow for pressure flow alone to drive translocation at known rates; pumps would be necessary at places along sieve tubes. However, calculations are presented to show that during the time taken to fix pores, by fast freezing or chemically, the filaments in them could rearrange and move further by Brownian and other motion than the distances between filaments which we need to measure. These calculations show that it is not possible, by microscopy alone, to answer the outstanding question “How are filaments arranged in translocating sieve pores?” with enough certainty to tell us whether pressure flow is adequate to explain translocation where filaments are present. The calculations are relevant also to microscopy of other cell structures which may move.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...