Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (3)
  • Physical Chemistry  (3)
  • 1
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A chain mechanism is proposed to account for the very rapid termination reactions observed between alkyl peroxy radicals containing α-C - H bonds which are from 104 to 106 faster than the termination of tertiary alkyl peroxy radicals. The new mechanism is with termination by. \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm R}\overline {{\rm CHOO}} $\end{document} is the zwitterion originally postulated by Criegee to account for the chemistry of O3-olefin addition. Heats of formation are estimated for \documentclass{article}\pagestyle{empty}\begin{document}$ \overline {{\rm CH}_2 {\rm OO,}} {\rm }\overline {{\rm RCHOO}} $\end{document}, and \documentclass{article}\pagestyle{empty}\begin{document}$ ({\rm C}\overline {{\rm H}_3 )_2 {\rm COO}} $\end{document} and it is shown that all steps in the mechanism are exothermic. The second step can account for (1Δ)O2 which has been observed. k1 is estimated to be 109-2/θ liter/M sec where θ = 2.303RT in kcal/mole. The second and third steps constitute a chain termination process where chain length is estimated at from 2 to 10. This mechanism for the first time accounts for minor products such as acid and ROOH found in termination reactions. Trioxide (step 3) is shown to be important below 30°C or in very short time observations (〈10 s at 30°C). Solvent effects are also shown to be compatible with the new mechanism.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Existing data on the self-reactions of tertiary peroxy radicals RO2 has been reanalyzed and corrected to deduce Arrhenius parameters for both termination and nontermination paths. For R = t-Butyl, these are logkt(M-1sec-1) = 7.1 - (7.0/θ) and logknt(M-1sec-1) = 9.4 - (9.0/θ), respectively, different from those recommended by other authors. The higher magnitudes observed for termination processes of tertiary peroxy radicals like those of cumyl and 1,1-diphenylethyl have been discussed in terms of a much greater cage recombination of cumyloxy radicals as contrasted with t-butoxy radicals. It is shown that for benzyl peroxy radicals, the R - O·2 bond dissociation energy is sufficiently low (18-20 kcal) that reversible dissociation into R· + O2 opens a competing second-order path to fast recombination R· + RO·22 → ROOR. This path is probably not important for cumyl peroxy radicals under usual experimental conditions but can become important for 1,1-diphenyl ethyl peroxy radicals at (O2) 〈 10-3M. At very low RO·2 concentrations (〈10-5M), in the absence of added O2, an apparent first-order disappearance of RO·2 can occur reflecting the rate determining breaking of the cumyl - O·2 bond followed by the second step above. The thermochemistry of RO·n is used to show that the reaction of R2O4 → 2RO + O2 must be concerted and cannot proceed via RO·3 which is too unstable and cannot form even from RO· + O2.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 12 (1980), S. 169-181 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Data on the liquid-phase oxidation of isobutane at 50 and 100°C have been reexamined, using a modified mechanism to take into account the termination by isobutylperoxy radicals. Algebraic expressions are derived from steady-state methods. Using Arrhenius parameters fitted by transition-state A factors and activation energies derived from observed “best” rate constants, new sets of parameters are derived for the rate constants for propagation by t—BuO2 + t—BuH → t-BuO2H + t—Bu⋅: \documentclass{article}\pagestyle{empty}\begin{document}$$ k_4 \, = \,1 \times 10^{8 - 14.5/{\rm \theta }} {\rm M}^{{\rm - 1}} \sec ^{ - 1} $$\end{document} where θ = 2.303RT in kcal/mol. This, together with new values for the termination parameters and rates of i-butyl production by k4B, is shown to give good agreement with the published data. An important reaction:\documentclass{article}\pagestyle{empty}\begin{document}$$ {\rm R}'{\rm O}_{2}^{.} + {\rm RO}_{2} {\rm H}\mathop{{\buildrel{-\!\!\longrightarrow}\over{\longleftarrow}}}\limits^{{\rm 12}}{\rm R'O}_{\rm 2} {\rm H} + {\rm RO}_{2}^{.} $$\end{document} is shown to quench the possible contributions to termination of adventitious radicals such as CH3O⋅2.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...