Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 3 (1971), S. 25-37 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A study of the structural isomerization rate of chemically activated 1,1-dimethylcyclopropane from singlet methylene addition to the double bond of isobutene is reported. Singlet methylenes were produced from the 4358- and 3660-Å photolysis of diazomethane in the presence of added oxygen. Theoretical rates calculated via RRKM theory are in excellent agreement with experiment for calculations utilizing activated complex structures and critical energies consistent with known thermal Arrhenius parameters, and excitation energies consistent with previous determinations of ΔHf00(CH2) + E*(CH2) = 116.1 and 112.6 kcal/mole for diazomethane photolyses at 3660 and 4358 Å, respectively.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: An experimental study of the decomposition kinetics of chemically activated 2-methyl-l-butene and 3-methyl-l-butene produced from photolysis of diazomethane-isobutene-neopentane-oxygen mixtures is reported. The experimental rate constants for 3-methyl-l-butene decomposition were 1.74 ± 0.44 × 108 sec-1 and 1.01 ± 0.25 × 108 sec-1 at 3660 and 4358 Å, respectively. 2-Methyl-l-butene experimental decomposition rate constants were found to be 5.94 ± 0.59 × 107 sec-1 at 3660 Å and 3.42 ± 0.34 × 107 sec-1 at 4358 Å. Activated complex structures giving Arrhenius A-factors calculated from absolute rate theory of 1016.6 ± 0.5 sec-1 for 3-methyl-l-butene and 1016.2 ± 0.4 sec-1 for 2-methyl-l-butene, both calculated at 1000°K, were required to fit RRKM theory calculated rate constants to the experimental rate constants at reasonable E0 and E* values. Corrected calculations (adjusted E0 values) on previous results for 2-pentene decomposition gave an Arrhenius A-factor of 1016.45 ± 0.35 sec-1 at 1000°K. The predicted A-factors for these three alkene decompositions giving resonance-stabilized methylully radicals are in good internal agreement. The fact that these A-factors are only slightly less than those for related alkane decompositions indicates that methylallylic resonance in the decomposition products leads to only a small amount of tightening in the corresponding activated complexes. This tightening is a significantly smaller factor than the large reduction in the critical energy due to resonance stabilization.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...