Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Digitale Medien  (1)
  • 1975-1979  (1)
  • Physics  (1)
Materialart
  • Digitale Medien  (1)
Erscheinungszeitraum
Jahr
  • 1
    Digitale Medien
    Digitale Medien
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 17 (1979), S. 889-904 
    ISSN: 0360-6376
    Schlagwort(e): Physics ; Polymer and Materials Science
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie
    Notizen: The process of polyethylene terephthalate (PET) formation in the presence of dicarboxylic acids has been studied. Certain amounts of terephthalic acid (TPA) have two- to threefold accelerating efficiency in the polycondensation process. To elucidate the causes of the acceleration the main reactions leading to PET formation in the presence of dicarboxylic acids have been investigated by the use of models. The evaluation of kinetic and equilibrium parameters obtained for model reactions made it possible to conclude that the influence of carboxyl-containing additives on the apparent rate of polycondensation manifests itself in accelerating direct reactions and facilitating the liberation of the eliminated by-product; that is, ethylene glycol (EG) from the polymer melt. Carboxylic acid acts as a catalyst on the ester interchange of 2-hydroxyethyl ester end groups and thus increases the rate of polymer formation in this reaction 10-40 times. The parallel interaction between the 2-hydroxyethyl ester end group and the carboxyl group of the added acid is also catalyzed by the acid and its rate constant is four times larger than that of the catalytic polycondensation of 2-hydroxyethyl ester end groups. Unlike EG, the reaction water formed in the process is more readily removed from the reaction system and thus promotes the intensification of the process. In addition, the carboxyl groups react with the eliminated EG to decrease its amount and shift the equilibrium toward polymer formation. The investigation of the consequent parallel reactions on models made it possible to draw a conclusion about the higher reactivity of 2-hydroxyethyl esters in the esterification processes. This fact has been explained by strengthening the nucleophilicity of the oxygen atom in the hydroxyl of a 2-hydroxyethyl ester group compared with that of EG; for example, by the formation of an intramolecular cycle involving a hydrogen bond. Simultaneously, it has been found that in the system simulating PET polycondensation in the presence of dicarboxylic acids the reaction mechanism involves the catalysis by a proton formed during the carboxyl group dissociation and accepted by the 2-hydroxyethyl ester group.
    Zusätzliches Material: 7 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...