Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 573-581 
    ISSN: 0887-6266
    Keywords: polyether polyol ; polyurethane foam ; block-segmented copolymers ; microphase separation ; optical microscopy ; transmission electron microscopy ; small-angle X-ray scattering ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A series of flexible polyurethane slabstock foam samples were prepared with varying water content and studied using transmission electron microscopy (TEM), video-enhanced optical microscopy (VEM), and small-angle X-ray scattering (SAXS). A new TEM sample preparation technique was developed in which the foam is impregnated with water, frozen, and microtomed, and the polyether soft segment is selectively degraded in the electron beam. Structures of two size scales were detected. A texture with grains (“urea aggregates”) 50-200 nm in size was imaged using both VEM and low-magnification TEM for foams with formulations containing more than 2 pphp water. For the first time, images of urea hard segment microdomains in polyurethane foam (approximately 5 nm in size) were obtained using high-magnification TEM. A microdomain spacing of approximately 6-8 nm was estimated from the SAXS scattering profiles. Glycerol was added to one of the formulations in order to modify the urea microphase separation and to give insight into morphology development in molded polyurethane foam systems. No structure was observed in low-magnification TEM images of the glycerol-modified foam, although smaller structures (hard segments) were detected at high magnification and by SAXS. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 573-581, 1998
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 23 (1985), S. 1057-1061 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The reaction of poly(vinylidene fluoride) with several different bases in dimethylformamide solution yields dehydrofluorinated products with conjugated polyene structures. The extent of elimination can be controlled by varying the amount of added base. The structural properties of dehydrofluorinated materials depend on the base used. Polymer films cast from DMF solution exhibit electronic conductivity upon iodine doping; the conductivity is also a function of the base used.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 18 (1980), S. 2303-2305 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 35 (1997), S. 2629-2643 
    ISSN: 0887-6266
    Keywords: microphase-separated diblock copolymer ; conformational asymmetry ; epsilon parameter ; TEM ; SAXS ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The equilibrium morphological behavior of a series of conformationally asymmetric linear diblock copolymers is characterized via small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The linear diblock molecules of polyisoprene and poly(t-butylmethacrylate) (PtBMA) are prepared anionically over a range of PtBMA volume fractions 0.17 to 0.85. Solution light-scattering experiments are performed on PtBMA homopolymer at theta conditions, and the results were compared with PI data in the literature in order to characterize the degree of conformational asymmetry between the respective blocks. This conformational asymmetry is quantified by an ε of 0.75. The experimental results are compared with morphological behavior calculated utilizing self-consistent mean field theory for a diblock system with ε = 0.75. At middle to high PtBMA volume fractions, φPtBMA 〉 0.30, the experimental morphological behavior agrees well with the calculated behavior; the microphase boundaries are slightly shifted to higher volume fractions of the PtBMA block due to its larger Kuhn length. At φPtBMA 〈 0.30, however, discrepancies are found in the volume fraction dependence of experimentally determined morphological behavior and that calculated theoretically. Interestingly, extremely well-ordered cylindrical microstructures were observed for PI cylinder domains embedded in PtBMA matrices; these samples were prepared by solvent casting with no treatment, such as shearing, to enhance long-range order. These well-ordered cylinder structures contrast with PtBMA cylinders in a PI matrix on the opposite side of the phase diagram that have very poor long-range order. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2629-2643, 1997
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...