Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 17 (1979), S. 3797-3810 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Several N-vinylarylamines have been prepared by direct N-vinylation of arylamine salts with acetylene at atmospheric pressure. Nuclear magnetic resonance (NMR) spectra of the various N-vinylarylamines were recorded and chemical shift assignments were made for the first time. The vinyl protons of the enamines generally exhibit an ABX pattern. The electron-rich monomers are sensitive to acid-catalyzed hydrolysis in a wet solvent. Polymerizations of the monomers were carried out at low temperatures with phosphorous pentafluoride as an initiator. It was found that PF5 generated directly from thermal decomposition of p-chlorobenzenediazonium hexafluorophosphate is useful in the preparation of an extremely high-molecular-weight poly(N-vinylcarbazole) (Mw = 3 × 106) with a narrow molecular weight distribution (MWD = 2.1). The polymerizability of N-vinylarylamines appears to vary with the amine functional groups of the monomers. N-vinylarylamine containing a planar amine moiety such as carbazole forms a higher-molecular-weight polymer than the monomers with the nonplanar bulky amine groups.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 18 (1980), S. 2869-2873 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 21 (1983), S. 2363-2382 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Vinyl acetate (VAc)-butyl acrylate (BuA) comonomer mixtures with various composition were polymerized by batch and semicontinuous emulsion polymerization processes. PVAc and PBuA homopolymer latexes as well as the (VAc-BuA) copolymer latexes were characterized with respect to particle size, molecular weight, acid end groups on particle surfaces, and colloidal stability against electrolytes. The surface and colloidal properties of these latexes were also compared before and after aging and acid hydrolysis. The average particle size of batch latexes was independent of copolymer composition, whereas for semicontinuous latexes it decreased with increasing BuA content and was always lower than that of the corresponding batch latex. The molecular weight distribution (MWD) for batch latexes was narrower and much less dependent on composition than that of the semicontinuous latexes; bimodal MWD was found in most semicontinuous latexes with a substantial amount of low MW fraction. The total weak and strong acid end groups on particle surfaces for semicontinuous latexes is higher, and more dependent on composition, than the batch latexes. Acid-induced hydrolysis results in a drastic change in the type and concentration of the surface groups of the semicontinuous latex particles. Colloidal stability against electrolytes showed that both electrostatic (due to surface acid groups) and steric [due to surface poly(vinyl alcohol)] mechanisms are contributing. However, for semicontinuous latexes, increasing PVAc content above 50 mol % resulted in a proportional increase and ultimately dominant role of steric stabilization. The results were interpreted in terms of differences in reactivity ratios and water solubilities of the two monomers and their effects on the locus of initiation and growth in the two polymerization processes, as well as the monomer sequence within the polymer chain and degree of homogeniety of the copolymer composition within the particle.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 11 (1973), S. 447-452 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The results of the competitive growth of monodisperse polystyrene latex particles reported earlier by Vanderhoff et al. are reconciled with the predictions of more recent particle-growth theories. In these experiments, monomer was polymerized in a seed latex comprised of a mixture of two monodisperse latexes so that the particles of different size competed with one another for the available monomer and free radicals. The results were expressed in terms of the equation dV/dt = kDc, where V is the particle volume, D the diameter, and k and c constants. The value of c is zero for emulsion polymerizations obeying Smith-Ewart Case II kinetics and 3 for polymerizations in homogeneous phase. Experimentally, for water-soluble persulfate initiator, the value of c was 2.5 for particle sizes larger than about 1500 Å and decreased toward zero as the particle size was decreased below 1500 Å; for oil-soluble benzoyl peroxide initiator, it was 2.5 until the larger particles reached the critical size needed to sustain two growing radicals (about 13,000 Å), after which it increased to 3. The present work uses more recent particle-growth theories to demonstrate that these experimental values of 2.5 and 3 are consistent with the theoretical predictions for water-soluble and oil-soluble initiators, respectively.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 12 (1974), S. 29-43 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The polyethyleneimine (PEI)-water-silica gel absorption system was used as a model system to investigate the relationship between diffusion into the porous structure, adsorption rate, and molecular weight of the polymer. Three silica gels, Porasil A, B, and and C having a range of characteristic porosity were used as adsorbents. Adsorption of PEI on Porasil C, which has the majority of its pores much larger than the dimensions of the adsorbate molecule, increased initially with increased molecular weight but became nearly constant at higher molecular weight. Little increase in adsorption occurred for this silica gel with increased ionic strength or with increased pH between 9.5 and 10.8. In contrast, adsorption increased sharply with increased ionic strength and for the same pH range on Porasil A. Molecular weight dependence was reversed. Adsorption decreased with increased molecular weight on Porasil A. In this case, the molecular size of PEI investigated was the same as the majority of pore apertures in the adsorbent. Solution environments (i.e., pH and ionic strength) that decrease the size of the PEI molecule and its affinity for the anionic silica gel surface, thus enabling it to more readily diffuse into the smaller porous regions of the adsorbent, are the apparent causes of the very large adsorption increase. Electrostatic repulsion between PEI molecules do not appear greatly to affect adsorption. Similar adsorption behavior has been reported in the literature for the PEI-cellulosic fiber adsorption system. Maximum adsorption on Porasil A occurred at pH 10.8, the same maximum generally reported for adsorption of PEI on cellulosic fibers. In this case, the silica gel (Porasil A) was found to have a pore size distribution and specific surface area of the same magnitude as cellulosic fibers prepared in the expanded state.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 23 (1985), S. 1579-1587 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Dark blue poly(copper 2,3,9,10,16,17,23,24-octacyanophthalocyanine) has been prepared by reacting 1,2,4,5-tetracyanobenzene with cuprous chloride in 1-methyl-2-pyrrolidone at ca. 150°C. The product has been characterized by elemental analysis, thermal analysis, infrared and UV-VIS spectroscopies. The polymer has high purity and exhibits good thermal stability in an inert atmosphere.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 23 (1985), S. 1589-1597 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Thermal treatment of novel poly(copper 2,3,9,10,16,17,23,24-octacyanophthalocyanine), PCOCP, has been carried out at different temperatures in an inert atmosphere. As polyacrylonitrile, the polymer can be thermally cyclized through the cyano groups to produce semiconductive and conductive materials. Polymeric copper octacyanophthalocyanine material with a conductivity as high as 5-8 (Ω cm)-1 was prepared. Weight loss, electrical data, infrared, and photoacoustic results of the thermally treated copper octacyanophthalocyanine polymer are discussed.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 22 (1984), S. 2197-2215 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Seeded emulsion copolymerization of an azeotropic composition of styrene (St) and an acrylinitrile (AN) comonomer mixture in polystyrene (PS) seed at different polymerization temperature of 55-75°C were investigated. The kinetic data showed a transition temperature at 65°C, above which the activation energy of polymerization is low, 6.1 Kcal/mol, compared with 9.8 Kcal/mol below it. The particle-size results and thin layer chromatographic (TLC) data showed two types of particle of different composition and morphology in the final latex system: a smaller size of (St-AN) copolymer and a larger size of core-PS and (St-AN) copolymer shell, with a zone of PS grafted (St-AN) copolymer in between. Various polymerization parameters, that is emulsifier concentration, type of seed particle and its size, and monomer/polymer ratio, were studied and their effects on particle size and particle morphology were examined. The percent of grafted core-PS was 10% below a polymerization temperature of 65°C and 40% above that temperature. By adjusting the size and number of the seed particles, monomer-polymer ratio, and emulsifier concentration conditions were established in which a final copolymer latex with “perfect” core-shell morphology was achieved.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 21 (1983), S. 65-95 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The structure-property relationships of polycaprolactone-based segmented polyurethanes were studied using differential scanning calorimetry (DSC), small-angle x-ray scattering (SAXS), wide-angle x-ray diffraction (WAXD), dynamic mechanical, and stress-strain testing. The materials studied varied in hard-segment type [4,4′-diphenylmethane diisocyanate/butanediol (MDI/BD) or 4,4′-dicyclohexyl methane diisocyanate/butanediol (H12MDI/BD)], soft-segment molecular weight (830 or 2000 MW polycaprolactone), hard-segment content (23-77% by weight), and thermal history. The materials with aromatic (MDI/BD) hard segments had semicrystalline hard-segment domains, while the materials with aliphatic (H12MDI/BD) hard segment had mostly amorphous domains. Materials with the shorter polycaprolactone soft segment (830 MW) exhibited thermal and mechanical behavior which indicated a considerable degree of hard- and soft-segment compatibility. The materials which contained a 2000-MW polycaprolactone soft segment exhibited better-defined microphase separation. SAXS was used to characterize the microphase structure of each system. The effects of hard-segment content and soft-segment molecular weight were similar for the aromatic (MDI) and aliphatic (H12MDI) hard-segment-based block copolymers. Changing the hard segment from aromatic to aliphatic gave materials with larger interfacial area and slightly higher tensile strength. A range of morphologies between isolated hard domains in a rubbery matrix and isolated rubbery domains in a hard matrix was observed.
    Additional Material: 19 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0449-2978
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Mechanical properties were correlated with glass transition temperatures for a series of random copolymers of methyl methacrylate with comonomers selected from the higher n-alkyl acrylates and N-n-alkylacrylamides. The plasticizing comonomers were the n-butyl, 2-ethylhexyl, n-octadecyl, and oleyl acrylates, and the N-n-butyl-, N-n-octyl-, N-n-octadecyl-, and N-oleylacrylamides. The complete range of compositions was investigated. However, the bulk of the data was obtained on compositions in the glassy region below the onset of the vitreous transition. In this region it was found that the decrease in tensile and flexural moduli and strengths with increase in internal plasticizer for all of the systems was directly proportional to the decrease in Tg. It was concluded that the additive contribution to the free volume made by each side-chain methylene group was alone responsible for the magnitude of the rate of change of properties. However, polar contributions of the amide group to stiffening the main chain exceeded those of the ester, so that the amides were less efficient plasticizers. An empirical equation was derived which described, with fair accuracy, the decrease in the mechanical parameters with composition for the amorphous copolymers. It was reasonably successful in predicting properties even into the composition range where the ambient testing temperature corresponded to or exceeded the transition temperature. In this transition region an accelerated decrease in the magnitude of the physical properties was observed. All samples exhibited brittle fracture except those tested in the transition region. Here the strain was largely irrecoverable flow. Side-chain crystallinity did not interfere significantly with the mechanical properties because moduli and strengths had already decayed to small values near the compositions where crystallinity commenced. Non-random copolymers of vinyl stearate and methyl methacrylate showed no internal plasticization, apparently because of macrophase aggregation.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...