Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 21 (1983), S. 1819-1829 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A detailed magic angle spinning 13C-NMR investigation of the intractable polymer prepared by plasma polymerization of toluene and isotopically labeled toluene led to a proposed model for the structure of the polymer and suggested some of the likely processes that occur in the gas phase leading to film formation. From the 13C spectra four resolved resonances permitted the determination of the contribution of nonprotonated and protonated unsaturated as well as methyl and other aliphatic carbons to the polymer structure. Specific 13C isotopic labeling of the methyl and phenyl C-1 toluene carbons in the injected liquid vapor allowed the destination of these carbons in the deposited polymer to be traced. The dominant structure is derived primarily from two precursors: benzyl radical and toluene itself. The 13C data further requires a net saturation of ca. 30% of the toluene double bonds and a net displacement of hydrogen by carbon on ca. 20% of the toluene ring carbons.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 19 (1981), S. 2987-2996 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Solid-state 13C-NMR spectra were obtained by cross-polarization and magic angle spinning of polymers prepared by injecting ethane, ethylene, and acetylene into a radiofrequency plasma. By use of the delayed decoupling technique to suppress protonated carbon peaks and difference spectroscopy five resolved spectral bands can be distinguished. These bands are assigned to (I) unsaturated nonprotonated, (II) unsaturated CH and CH2, (III) quaternary, (IV) methine and methylene, and (V) methyl carbons by comparison with standard 13C shifts compiled for organic materials. The relative amounts of these structural features in the polymers were determined quantitatively and the possible sources of errors considered.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...