Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Physics  (4)
  • 1
    ISSN: 0449-2978
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: New structural phenomena which can be produced in polymers at low temperatures or by the action of high forces are described and discussed. Experimental evidence supports the argument that the deformation of polymers can develop not only as a result of conformational changes of the macromolecules proper but also by transformation of more complex structural formations. The consequence of this phenomenon is the possibility of large deformations far below the glass-transition temperature in a crystalline polymer with well-developed supermolecular structure. This type of deformation takes place without molecular orientation. Another phenomenon discussed is the sharp change of supermolecular structure in crystalline polymers caused by the action of a shock wave. These effects ought to be connected with an energetic rather than entropic deformation mechanism because the transformations occur at a supermolecular level. Thus, there can be two extreme types of deformation processes: the well-known conformation changes that occur at a molecular level, and the deformation of supermolecular structures. Examples of the pure form of the latter type of mechanism obtained under extreme conditions are given.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science Part A-2: Polymer Physics 9 (1971), S. 1919-1933 
    ISSN: 0449-2978
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A new phenomenon in necking of some polymers, including poly(ethylene terephthalate) (PETP) was detected. It was found that extension of PETP films under certain conditions results in periodic stress oscillations and a periodic change in appearance of the sample. The conditions at which self-oscillations appear have been determined, and the principal regularities of this regime of deformation are described. The following factors are critical for the appearance of self-oscillation: speed of straining and compliance of the sample. The self-oscillation of stress and formation of the periodic transverse bands is attributed to heat dissipation during necking corresponding to local temperature jumps and periodic strong variation of elasticity modulus due to poor heat conductivity of the polymer. Changing the external conditions of heat transfer influences the possibility and development of the effect. The phenomenon is common for various crystallizing polymers, being dependent on physical properties of the polymer and conditions of deformation.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science Part A-1: Polymer Chemistry 9 (1971), S. 833-854 
    ISSN: 0449-296X
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Radical copolymerization of methyl methacrylate (MMA, M1) with various monomers has been studied in presence of modifiers, i.e., complexing agents (CA): ZnCl2, AlCl3, AlBr3, Al(C2H5)2Cl, forming coordinate complexes with ester group of the monomer and of the propagating radical. The comonomers of the first group form complexes of similar structure and stability as MMA, methyl acrylate, or butyl acrylate. The comonomers of the second group do not form complexes with the modifiers (vinylidene chloride, 2,6-dichlorostyrene, p-chlorostyrene, styrene). For all systems studied the copolymer composition follows the Mayo-Lewis equation. In the first group of the systems the effective reactivity ratios (r1, r2) approach unity with increase of the CA molar content (r1 = r2 ≃ 1 at [(CA)/MMA] + [MA] ≥ 0,3) In the second group of the systems the values of r1 either increase to a limit value (at [CA]/[MMA] ≥ 0.3), pass through maximum, or decrease to a limiting value with the CA molar content. The values of r2 decrease in all systems. The character of variation of r1 and r2 has been explained in terms of effects of the CA's on reactivity of MMA and PMMA radical. The equations for the copolymer compositions in these systems have been derived.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0449-296X
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The structure and thermodynamic properties of atactic and isotactic acrylic and methacrylic polymers containing 16-18 carbon atoms in the n-aliphatic side chains, and of copolymers of hexadecyl acrylate with isopropyl acrylate were studied by means of x-ray and differential thermal analysis. The crystallization of branched acrylic and methacrylic polymers and of acrylic copolymers proceeds in the form of a hexagonal crystal, regardless of the configuration of the backbone chain. Methods of ordering branched macromolecules are proposed, and the melting points, heats and entropies of fusion determined. The role of flexibility of the backbone chains in ordering and the crystallization processes was determined. In the case of poly(n-alkyl acrylates) the backbone chain is involved in the crystalline lattice; this is not the case in methacrylates and copolymers of hexadecyl acrylate with isopropyl acrylate. Some similarity was assumed between the structure of biopolymers and synthetic branched polymers.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...