Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 14 (1976), S. 1447-1462 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The photolysis of virgin PVC powder suspended in water, methanol, n-hexane, aqueous NH4OH (30 wt-%), and 0.1 wt-% iodine in methanol and also as dry powder was studied. The mechanism of photolysis of PVC powder has been investigated by using ESR spectroscopy, conductivity titration, gel-permeation chromatography (GPC), and absorption spectroscopy. Photolysis of PVC has been found to occur by a free-radical mechanism. ESR spectroscopy permits a partial identification of several different types of free radicals in PVC such as alkyl, polyenyl, and peroxy radicals. An interpretation is proposed of the mechanism of formation of conjugated polyene structures, and also a new explanation of the crosslinking mechanism, in which transfer of unpaired electrons to double bonds occurs, is suggested. It has also been found that conjugated double bonds can photosensitize free-radical formation as a result of increased ultraviolet absorption due to polyene structures.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 11 (1973), S. 1903-1915 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The effects of three types of free radical initiators (HO·, H2N·, and H3C·) from redox systems, have been studied for four types of methallyl monomers, by use of ESR with a flow system. The structure, the relative concentrations, and the steric conformations of the monomer radical intermediates have been derived from the ESR spectra. In the case of H2N · and HO · addition to methallyl alcohol (MAA), methallyl amine (MAAm), and sodium methallyl sulfonate (SMAS), the ESR spectra of the reacting species are interpreted as monomer head radicals only (H2N · and HO · are added to the monomer tail). Methallyl acetate (MAAc) with HO ·, is an exception, giving hydrogen abstraction to form an allyl type radical. This reaction may influence the polymerization behavior of MAAc. The methallyl monomers behave differently from the allyl monomers, where appreciable amounts of monomer tail radicals were found in addition to the head radicals which were the main species. For methallyl monomers, this may be due to steric hindrance caused by the two substituents on the α carbon. The CH3 radicals add only to positively polarized reactive double bonds, i.e., in SMAS in this study, and allyl alcohol in a previous study. The coupling constants of β CH2 protons vary considerably with the substituents. For β1 protons, the coupling constants decrease in the order OH 〉 CH3 〉 NH2. For β2 protons (allyl hydrogen), the coupling constants decrease in the order CH2OH 〉 CH2NH2 〉 CH2OCOCH3Na, i.e., the constants decrease in the order of increased bulkiness of the groups. Some exceptions are interpreted as due to complex formation with Ti4+. The effects of pH of the reaction medium are largely those expected.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A new mechanism has been proposed for the photooxidation of polystyrene as film and in benzene. The initial stage of the photooxidative degradation may involve reactions of singlet oxygen with polystyrene molecules. Singlet oxygen may be formed in the reaction between excited benzene ring in polystyrene molecule and molecular oxygen. The addition of singlet oxygen quenchers such as 1,3-cyclohexadiene or β-carotene reduces the rate of polymer degradation in benzene solution. The mechanisms of the photolysis of polystyrene as film and in benzene solution, in vacuo and in the presence of oxygen, are discussed and interpretations proposed. The pronounced yellowing of polystyrene during the photooxidation process is interpreted as a reaction involving benzene ring-opening photooxidation in polystyrene molecule. These results were obtained by comparing ultraviolet and infrared spectra in experiments of photooxidation of pure liquid benzene and polystyrene film.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: During the quinone-sensitized photooxidative degradation of polystyrene film and its solution in benzene, an initial rapid decrease of average molecular weight has been observed by GPC and viscosity measurements. The reaction rates are strongly increased by quinones such as p-quinone, duroquinone, anthraquinone, and chloranil. It has been suggested that this photosensitized degradation of polystyrene occurs by a singlet oxygen reaction which might be related to an energy transfer mechanism from excited triplet states of quinones to molecular oxygen. The photooxidative degradation of polystyrene in solution can be diminished by addition of typical singlet oxygen quenchers such as 1,3-cyclohexadiene or β-carotene.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 14 (1976), S. 2449-2461 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The copolymerization of methyl methacrylate (MMA) with glycidyl methacrylate (GMA) at 60°C with 2,2′-azobisisobutyronitrile (AIBN) as radical initiator and in the presence of thiophenol (TP) as chain-transfer agent has been investigated. Monomer reactivity ratios for MMA and GMA are found to be r1 (MMA) = 0.80 ± 0.015 and r2 (GMA) = 0.70 ± 0.015, from which Q and e values are calculated to be 0.68 and -0.36 for GMA. The initial rate of copolymerization Rp at 60°C with AIBN (0.02 mole/l.) and TP (0.1, 0.01 mole/l.) were found to increase nonlinearly with increasing GMA concentration in the monomer feed. Homopolymerizations of MMA and GMA monomers were studied in the presence and in the absence of thiophenol. The values of δ (= kt1/2/kp) for MMA and GMA were determined to be 10.25 and 3.00 (mole-sec/l.)1/2, respectively. Using the values r1 (MMA), r2 (GMA), δ1 (MMA), δ2 (GMA), and Rp, the cross-termination constants φ for MMA-GMA monomers were determined (average value φ = 0.42). The increase in Rp values with increasing GMA content has been attributed to the cross-termination of MMA-GMA radicals. The transfer constant of TP has also been determined for GMA and found to be 1.00. A MMA-GMA copolymer of low molecular weight, containing 2.01% of oxirane oxygen, was modified by opening of the oxirane ring of GMA by reaction with diethanolamine (DEA). The reaction was carried out at 70 ± 1°C, the copolymer content of epoxy groups and the amine being assumed to be in the molar ratio of 1:4. Addition of a hydrogen-bond acceptor like nitrobenzene decreases, while addition of a hydrogen-bond donor like phenol increases the rate of epoxy ring opening with DEA. This indicates that a hydrogen-bonded intermediate is involved in this reaction and that it weakens the epoxy ring and enhances the rate of its opening with DEA. From the studies of the conversion rates, existence of a “nonspecific” side reaction has been shown which involves the reaction of the terminal epoxy groups of the copolymer and the hydroxyl groups of DEA or formed in the reaction with DEA (involves a chain coupling). DEA can be trifunctional in this reaction. This has been further confirmed from the increase of number-average molecular weights M̄n of the copolymers resulting from this coupling and the nitrogen content in the copolymers after modification with DEA.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science Part A-1: Polymer Chemistry 8 (1970), S. 77-94 
    ISSN: 0449-296X
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: ESR measurements of transient radicals during redox polymerization of various vinyl esters in aqueous solutions have been made by using the rapid-mixing flow method. The initiation was by means of hydroxyl and amino radicals from the systems titanous chloride-hydrogen peroxide and titanous chloride-hydroxylamine, respectively. The well resolved hyperfine structures obtained at monomer concentrations of about 0.05 mole/1. are unambiguously assigned to the monomer radicals formed by addition of initiator radicals to monomers. At higher monomer concentrations, additional weak signals attributed to the growing polymer radicals were observed. The effect of reaction conditions on the signal intensity has been studied in particular for vinyl acetate. The coupling constants of monomer radicals from various vinyl esters (acetate, propionate, butyrate, crotonate, and isopropenyl acetate) were obtained and the spin densities calculated. From the ESR spectra, the monomer radicals have a conformation with the substituent R (R = HO or NH2) of R—CH2—CH(OCOR′) locked in a position above or below the radical plane. This is tentatively interpreted as due to formation of intramolecular hydrogen bonds to ring structures or complexes with titanium ions. In addition, hydrogen abstraction reactions of some model compounds for poly(vinyl acetate) have been briefly studied in relation to chain transfer and grafting reactions.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...