Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Ionic groups incorporated into a polymer have a decided effect on its physical properties. A number of ionomers and polyelectrolytes have been widely applied. In particular, sulfonated bisphenol-A polysulfone (SPSF) has been used as a composite or single-component membrane for the desalination of water. In this article, the synthesis and physical characteristics of sulfonated polysulfone are addressed. A detailed synthesis route is provided and methods that yield determinable levels of sulfonation are described. These ion-containing polymers retain an excessive amount of residual salts, which, of course, are impurities to the system. Therefore, before any analyses were made the polymers were subjected to a thorough soxhlet extraction process with boiling water, which appeared to be quite effective. The degree of sulfonation was assessed by several methods such as 1H NMR and FT-IR. A new 1H NMR method was derived because the method cited in the literature proved to be too inconsistent for our work. The new 1H NMR method used a quaternary ammonium counterion [N(CH3)4]. These methyl protons are easily measured and may be ratioed against the isopropylidene protons in the polymer backbone that act as an internal standard. Characterization of the physical properties of SPSF consisted of water uptake, differential scanning calorimetry (DSC), thermomechanical analysis (TMA), and solubility studies. Its physical appearance and mechanical behavior were improved by the solution procedure. Also addressed were the effects of different counterions (Na+ & Mg++) with SPSFs of low levels of sulfonation. The variation in physical properties between the divalent and monovalent counterions is dramatic, especially when observed by TMA in the rubber plateau above the apparent glass temperature.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 35 (1997), S. 331-346 
    ISSN: 0887-6266
    Keywords: interdiffusion ; interface/phase ; electron microprobe analysis ; epoxy ; thermoplastic polymer ; a cure reaction ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Electron microprobe analysis (EMP) was used to study interdiffusion in bilayer films of thermoplastic poly(vinylpyrrolidone) (PVP) and a thermoset epoxy. The bilayer films were prepared by casting a stoichiometric mixture of the uncured diglycidyl ether of bisphenol A epoxy (DGEBA) and 4,4′-diaminodiphenylsulfone (DDS) on the PVP film and then curing the system in a two-step process under a nitrogen atmosphere. For the EMP studies, the sulfur signal was used as a probe for DDS, while the nitrogen signal served as a probe for both DDS and PVP. The addition of brominated DGEBA to the conventional DGEBA in a 1: 1 weight ratio allowed the bromine signal to be used as a probe for the epoxy phase. It was found that the interfacial thickness was much larger for the film prepared from low molecular weight PVP than that from high molecular weight PVP. Interdiffusion was suppressed when the initial cure temperature in the two-step cure cycle was 130°C compared to 170°C, in which the first stage of the cure reaction dominated the interdiffusion process. More importantly, it was demonstrated that the diffusion front of the curing agent was located closer to the thermoplastic polymer phase as compared to that of the thermoset polymer in the interface region. This tendency was more significant in the system with the larger interfacial thickness. These results have important consequences on interphase structures and properties. They suggest that crosslinking of the epoxy in the interphase may be suppressed because of an insufficient amount of curing agent and that the not-fully-reacted curing agent in the PVP phase may act to plasticize this phase. © 1997 John Wiley & Sons, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...