Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-9680
    Keywords: water balance ; Pinus radiata ; Lolium perene ; Medicago sativa ; Trifolium spp ; rainfall interception ; competition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In this study we determined soil moisture storage, evapotranspiration (ET) and light interception in an agroforestry trial consisting of pine trees grown over (1) control (bare ground), (2) ryegrass/clovers (Lolium perene/Trifolium spp.), (3) lucerne (Medicago sativa), and (4) ryegrass only during the third growing season between 1992 and 1993. The results show that: 1. In the period when rainfall was frequent and exceeded the evaporative demand (Epot), ET and depletion of soil moisture were not affected by the ground cover treatments. During summer when rainfall was less frequent, but with moisture readily available in the soil profile, ET was associated with plant canopy, and was significantly higher for the pasture ground covers than for the control. Therefore, the more rapid growth by lucerne caused higher ET in this ground cover than in the ryegrass/clovers ground cover in which the pasture was slow growing. At the end of the study period, total ET was in the following order: lucerne (757 mm) 〉 ryegrass/clovers (729 mm) 〉 Control (618 mm). 2. ET was dominated by pasture transpiration (Ep) during most of the growing season, but by tree transpiration (Et) in winter when large parts of the pasture canopy was shaded. Ep was always at least 16% higher for lucerne than for ryegrass/clovers species as a result of a greater radiation intercepted by the former. 3. Fraction of incoming radiation intercepted by the tree crowns was in the following order: control 〉 ryegrass 〉 ryegrass/clovers 〉 lucerne. At the end of the one-year period, fraction of intercepted radiation was 140% greater for control than for lucerne ground cover. 4. The control produced the largest tree crowns, which were almost twice the tree crowns in the lucerne ground cover which produced the smallest trees. Accordingly, the trees in the control intercepted more radiation and rainfall, with the former being lost to evaporation, than the trees in the pasture. 5. The fractions of radiation intercepted and ET accounted for by the trees and pastures were associated with the proportion of the plot area they occupied.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-9680
    Keywords: nitrogen fixation ; 15N ; %Ndfa ; ryegrass+clover pasture ; silvopastoral system
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Quantitative field measurements of biological nitrogen fixation (BNF) and biomass production by four different understorey pastures in a Pinus radiata-pasture agroforestry system were determined over a period of one year. The trees were two years old at the beginning of this study and the understorey pastures were being cut and removed for silage. The BNF was determined using the 15N dilution technique. Pastures of ryegrass+clover, cocksfoot+clover, phalaris+clover and lucerne were used. Substantial amounts of BNF were found (71 to 230 kg N ha−1 year−1) with lucerne showing the highest N fixation. However, lucerne derived only 71 to 72% of its N from the atmosphere (%Ndfa) during the spring/summer period compared to 83–97% with clovers, thus the net N demand from the soil was substantially higher with lucerne. This caused increased N stress to the trees. Clover in ryegrass+clover pasture fixed more N than the other grass+clover pastures. Although pasture position in relation to trees did not affect annual pasture total DMY and %Ndfa, pastures north of tree row grew better than those in other positions. Trees significantly affected the BNF of legumes and the botanical composition of pastures with highest BNF and legume production occurring in pastures midway between two rows of trees. These results suggest that it would be advantageous to evaluate different legumes and grasses for tolerance of shade and moisture stress in future studies. As the trees studied were only 1.5 to 3 m in height, their effects on BNF, seasonal pasture biomass production and botanical composition are expected to increase with tree dominance in the ecosystem with time. Amounts of N fixed were related to the productivity (i.e. dry matter and N yield) and seasonal persistence of the legumes. The productivity was high in spring and summer and low in autumn and winter.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...