Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Earth, moon and planets 73 (1996), S. 221-236 
    ISSN: 1573-0794
    Schlagwort(e): Planet ; Jupiter
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Geologie und Paläontologie , Physik
    Notizen: Abstract In the deep interior of the giant planets Jupiter and Saturn, ordinary hydrogen and helium are transformed into a conducting metallic liquid at extremely high pressure. It is likely that the giant planets' observed magnetic field is constantly generated in the metallic fluid core by magnetohydrodynamic processes, converting mechanic energy in the form of convection into magnetic energy. The maximum strength of their magnetic fields is likely to be limited by magnetic field instabilities which convert the magnetic energy back into convection. The parameter which governs the occurrence of magnetic instabilities is the Elsasser number, λ = B 2Σ/2Ωϱ, where B is the field strength, Σ is the electrical conductivity, Ω is the rotation rate and ϱ is the density. Since magnetic instability will be very active when λ exceeds a critical value λ c ∼ 10 (the precise value depending on the magnetic field distribution), this imposes an upper bound on the effective electrical conductivity of the metallic fluid which comprises the bulk of Jupiter's interior and much of Saturn's. Stability calculations including both toroidal (model) and poloidal (observed) components of the magnetic field in a rapidly rotating spherical shell, have been performed. The most stable configuration of the field is when the poloidal component of field is strong and the toroidal field is weak; in this case we obtain an upper bound for electrical conductivity of Σ ∼ 3 × 106 S/m; while the most unstable configuration of the field is when the toroidal and poloidal fields are comparable, giving rise to Σ m ∼ 3 × 105 S/m. The implications of the results for general dynamo theory are also discussed.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Studia geophysica et geodaetica 42 (1998), S. 247-253 
    ISSN: 1573-1626
    Schlagwort(e): convection ; hyperviscosity ; dynamos
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Architektur, Bauingenieurwesen, Vermessung , Geologie und Paläontologie , Physik
    Notizen: Abstract The most fundamental difficulty in the construction of an Earth-like dynamo model is associated with the constraint caused by the rapid rotation of the Earth. To stabilise numerical codes, many workers have introduced hyperviscosity into the governing equations. One of the major effects introduced by hyperviscosity is to offset the rotational constraint, and, consequently, to alter the key dynamics of an Earth-like dynamo. In this paper, an Earth-like convection model with or without the presence of an imposed magnetic field is investigated with or without the effect of hyperviscosity. A nonlinear dynamo model with the mean field approximation is also used to examine the dynamical effect of hyperviscosity. The results suggest that great care should be taken when hyperviscosity is employed in geodynamo models.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...