Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 207 (1999), S. 169-173 
    ISSN: 1615-6102
    Keywords: Cell wall ; Development ; Pollen ; Tapetum ; Tilia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary InTilia platyphyllos, the anther tapetal cell walls undergo significant modifications from the tetrad stage onwards. During the tetrad stage the inner tangential and radial parts of the tapetal walls begin to dissolve, while the distal parts swell. After the tetrad stage, the distal and outer radial tapetal cell walls become covered by a thick, irregular, highly electron-dense, polysaccharide layer. Striking features of the maturing tapetal walls (microspore stage and later) are electron-translucent, structureless, unstainable angular areas of variable dimensions. Similar electron-translucent areas occur in the exine arcades and apertures, but also isolated in the locular fluid ofT. platyphyllos. Electron-translucent areas, that are also found in the exine arcades and tapetal cells of other angiosperms, can be interpreted as the products of poorly understood metabolic processes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 193 (1996), S. 144-173 
    ISSN: 1615-6102
    Keywords: Adhesion ; Cell wall ; Diatoms ; Exine ; Plasmalemma ; Pollen ; Silica
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Mechanisms acting in pattern morphogenesis in the cell walls of two distant groups of plants, pollen of spermatophytes and diatoms, are compared in order to discriminate common principles from plant group- and wall material-specific features. The exinous wall in pollen is sequentially deposited on the exocellular side of the plasmalemma, while the siliceous wall in diatoms is formed intracellularly within an expanding silica deposition vesicle (SDV) which is attached to the internal face of the plasmalemma. Two levels of patterning occur in diatom and pollen walls: the overall pattern stabilises the wall mechanically and is apparently initiated in both groups by the parent cell, and a microtubule-dependent aperture and portula pattern created by the new mitotic (diatoms) or meiotic (pollen) cells. The parent wall in diatoms, and also the callosic wall in microspores, functions as anchor surfaces for transient, species-specific patterned adhesions of the plasmalemma to these walls, involved in pattern and shape creation. Patterned adhesion and exocytosis is blocked in pollen walls where the plasmalemma is shielded by the endoplasmic reticulum at the sites of the future apertures. In diatoms, wall patterning is uncoupled from the formation of a siliceous wall per se when the SDV and its wall is formed without contact to the the plasmalemma. Conversely, a blue-print pattern laid out in advance along the plasmalemma can be found in several diatoms. This highlights the key function of the plasmalemma and its associated membrane skeleton (fibrous lamina), and its orchestrated co-operation with elements of the radial filamentous cytoskeleton (actin?) in pattern formation. The role of microtubules during generation of the overall pattern may be primarily a transport and stabilizing function. Auxiliary organelles (spacer vesicles, endoplasmic reticulum, mitochondria) involved in diatoms for shaping the SDV, and a mechanism adhering and disconnecting this SDV together with spacer organelles in a species-specifically controlled sequence to and from the plasmalemma, are unnecessary for pollen wall patterning. The precise positioning of the portula pattern in diatom walls is discussed with respect to their role as permanent anchors of the cytoplasm to its wall, and in providing spatial information for nucelar migration and the next cell division, whereas apertures in pollen are for single use only.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Plant systematics and evolution 131 (1979), S. 277-289 
    ISSN: 1615-6110
    Keywords: Aceraceae ; Acer campestre ; A. negundo ; A. opalus ; A. platanoides ; A. pseudoplatanus ; Pollen ; anther tapetum ; pollenkitt ; entomophily ; anemophily
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Several insect- and wind-pollinated species of the genusAcer have been investigated and compared in regard to pollen stickiness. The considerable amount of very inhomogeneous pollenkitt inA. negundo remains on the loculus wall or is deposited inside the exine cavities; thus the pollen is powdery. The small amount of non-homogeneous, granular pollenkitt inA. campestre mostly disappears into the exine cavities; only small droplets appear on the tectum surface; the pollen stickiness therefore is only moderate. On the other hand,A. pseudoplatanus andA. opalus produce an average amount of granular pollenkitt, which is deposited partially inside the exine and partially as a slender film on the tectum surface; in both the pollen is sticky.A. platanoides contains a great deal of granular and homogeneous pollenkitt; it does not only fill up the exine cavities but also extends as a thick, ± homogeneous, non-granular layer of pollenkitt over the tectum surface; therefore, the pollen is very sticky.—The characteristics of pollen agglutination together with other aspects of floral biology illustrate the wide spectrum between unequivocal entomophily and anemophily within the genusAcer: WhileA. negundo is anemophilous andA. platanoides is entomophilous, the remaining species investigated have a pollination syndrome with entomophilous and anemophilous features and are thus amphiphilous. The evolution withinAcer is tending not only towards dioecy, but also towards anemophily.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Plant systematics and evolution 135 (1980), S. 253-263 
    ISSN: 1615-6110
    Keywords: Euphorbiaceae ; Euphorbia ; Mercurialis ; Pollen ; pollenkitt ; anther tapetum ; entomophily ; anemophily
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Development, fine structure and distribution of pollenkitt is investigated inEuphorbia cyparissias, E. palustris, andMercurialis perennis. The predominantly anemophilousM. perennis produces a great amount of strictly homogeneous pollenkitt, which is deposited in the exine caves. In contrast to this and to all other angiosperms so far investigated, bothEuphorbia species produce large quantities of an extremely inhomogeneous and particular pollenkitt. Its ultrastructure is quite different, both during its development and after its deposition on the exine surface: Lipid particles with different electron density and size are wrapped in a strictly homogeneous electron transparent matrix. This can be considered as new and additional proof for the “secondary” entomophily ofEuphorbia.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Plant systematics and evolution 144 (1984), S. 9-16 
    ISSN: 1615-6110
    Keywords: Gymnosperms ; Gnetatae ; Ephedra ; Welwitschia ; Pollen ; anther tapetum ; pollination ecology ; pollenkitt ; entomophily ; anemophily ; origin of angiosperms
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Three members of theGnetatae (Ephedra campylopoda, E. americana, Welwitschia mirabilis) were investigated by TEM and SEM with respect to their anther tapetum and pollen development. In all three species pollenkitt is lacking. The pretended pollen stickiness thus does not depend on pollenkitt. Considering former observations one can now clearly state that pollenkitt is missing in all recent gymnosperm classes (both anemophilous and ± entomophilous). Pollenkitt thus is restricted and ± omnipresent within the angiosperms, where it represents one of the most important components of the entomophily syndrome. This can be regarded as important proof for the hypothesis that the angiosperms are a single coherent phylogenetic group.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Plant systematics and evolution 213 (1998), S. 217-231 
    ISSN: 1615-6110
    Keywords: Gnetales ; Ephedraceae ; Ephedra ; Pollen ; pollen tube ; polarity ; aperture ; exine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Pollen grain polarity, aperture condition and pollen tube formation were examined inEphedra americana, E. foliata, E. rupestris, E. distachya, andE. fragilis using LM, SEM and TEM. In the characteristic oblate pollen, as seen in situ in the tetrad configuration, the polar axis is the minor one and the equatorial plane runs between the two narrow ends of the microspore. The intine is thick in fresh fixed mature pollen but we have seen no indication of regions having an exceptionally thick intine that could be considered associated with an aperture or apertures. About three minutes after transferring fresh pollen to the germinating medium the ridged exine splits and twists away from the intine and its enclosed protoplast. The shed exine spreads out and curls into a scroll-like configuration that is as distinctive as that of the pollen shape had been but now having the ridges and valleys perpendicular to the long axis. The pollen tube develops, in our experience with more than a hundred germinating pollen grains, near one of the narrow tips of the pollen grain's equatorial plane. The location of the pollen tube initiation probably is related to the position of the tube cell nucleus. The pollen tube starts to grow about one hour after the exine was shed. The pollen tube emerges close to the narrow end (equator) of the gametophyte. This end emerged first as the exine is shed and is opposite to the prothallial cells. The stout pollen tube is c. 10µm in diameter grown in vitro on agar. In our germination medium the stout tube continued to elongate for about 24 hours reaching a length of c. 100 µm. With respect to exine morphology the aperture condition could be considered as inaperturate. The pollen tube, however, is formed in a germination area near one end of the exineless gametophyte.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Plant systematics and evolution 133 (1980), S. 135-148 
    ISSN: 1615-6110
    Keywords: Hamamelis ; Ranunculus ; Rhododendron ; Apis ; Eriades ; Pollen ; pollination ; entomophily ; pollen adhesives ; pollenkitt ; viscin threads
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The attachment of pollen grains among themselves, on the loculus wall, and on flower-visiting insects is quite different in entomophilous angiosperms using pollenkitt and those using viscin threads as pollen adhesives. The sticky and viscous pollenkitt makes the pollen grains adhere, while the thin, non-elastic, non-sticky, and flexible viscin fibers fasten them like ropes on insect hairs or bristles. Nectar vomited by honey-bees, sticky stigma secretions or other additional sticky substances further improve the pollen adherence to flower-visiting insects.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...