Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 89 (1985), S. 83-94 
    ISSN: 1573-5036
    Keywords: Compatible solutes ; Environmental stresses ; Polyethylene glycol ; Proline ; Proteins and enzymes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The ability of the compatible solute, proline, to affect the behavior of proteins has been examined in many different systems by many researches. In the present study of protein solvation, proline has been shown to prevent or diminish, in a concentration-dependent manner, the glutamine synthetase-precipitating ability of polyethylene glycol (PEG). The effects of PEG concentration and molecular weight are reduced by proline, and the interaction is strongly affected by pH. PEG causes precipitation of many proteins, and the ability of proline to reduce the precipitation of two non-enzymatic conjugated proteins, alfalfa mosaic virus and an3H-testosterone/antiserum complex, was also examined. Proline was effective in reducing the PEG-induced precipitation of both proteins. Virus precipitation by PEG and its alleviation by proline are influenced by pH. The increased virus-precipitating effect of PEG in the presence of salt (NaCl) is also alleviated by proline. The precipitation of the radioimmune complex by PEG is diminished by proline and by a mixture of free amino acids. These results indicate the generality of the three-way interaction between proline, protein and PEG. They may be of importance for extraction of proteins from biological systems and in studies of enzyme inactivation or protein denaturation in a cytoplasmic milieu. The results suggest that the protective effects of some amino acids are at least additive and are consistent with the conclusion that the compatible solutes protect protein-containing systems against the unfavorable consequences of dehydration and other stresses, by increasing the tendency of the system to maintain thestatus quo.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...