Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 18 (1974), S. 83-91 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Viscoelastic properties of the BBL ladder polymer were determined by a dynamic mechanical technique for the temperature range -150°C to 250°C and at frequencies of 3.5, 11, and 110 Hz. A secondary loss dispersion centered at -50°C (at 110 Hz) was discovered which probably arises from an in-chain relaxation mechanism. The loss dispersion resembles β-transitions found in more conventional polymers in intensity (maximum tan δ = 0.035), activation energy( E = 19,000 cal/mole), and in its close relation to the high-temperature mechanical properties of the polymers. Only slight changes in the low-temperature loss peak cause significant increases in brittleness. It is proposed that such changes, produced by a variety of environments, result from random chain scission at imperfection points in the ladder structure. For this reason we conclude that improving the environmental stability of BBL is of prime importance in its further development for specific applications.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0449-2978
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: It is shown that the Hirai-Eyring model for the liquid state is capable of accurately describing the p, V, T behavior of liquid polymers in the temperature range over which measurements are now made, and below. Once the parameter choices necessary to accomplish the fit are made for a particular polymer, the excess thermodynamic functions (differences in properties, liquid less solid) are determined by the same parameters. Above the glass transition temperature Tg the volume, excess enthalpy, and square of the excess entropy are predicted by the model to be essentially linear with temperature, in agreement with experiment. Below Tg, these functions do not remain linear (as is usually assumed in extrapolating the equilibrium behavior to low temperatures), but instead they rapidly approach zero in a continuous way as the temperature is lowered. These remarks apply to glass-forming materials composed of small molecules, as well as to polymers. The “paradox” raised by Kauzmann is thus resolved, and the Gibbs-DiMarzio second-order transition appears to be unnecessary.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science Part A-2: Polymer Physics 8 (1970), S. 455-465 
    ISSN: 0449-2978
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The dynamic mechanical properties of branched polyethylenes in the molten state were determined in the frequency range 10-3-10 radians/sec. The materials tested have remarkably similar rheological properties even though they vary greatly in molecular weight and molecular weight distribution. The similarity in properties is attributed to the influence of long chain branching on the relaxation spectra. A mechanistic argument is proposed to relate the observed behavior to molecular entanglement coupling. The concept of entanglement coupling involving long-chain branching leads to the expectation that the quasi-Newtonian and non-Newtonian viscosities of branched polymers may be either greater or less than those of linear polymers of the same species, which have comparable molecular weights. This is borne out by experiment.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science Part A-1: Polymer Chemistry 10 (1972), S. 2919-2923 
    ISSN: 0449-296X
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The syntheses of four new monomers and two new polyaromatic pyrazines are described. The monomers; bis-p,p′-(octanoyl)diphenyl ether (Ia), bis-p,p′-(hexadecanoyl)diphenyl ether (Ib), bis-p,p′-(α-bromooctanoyl)diphenyl ether (IIa), and bis-p,p′-(α-bromohexadecanoyl)diphenyl ether (IIb), were produced by Friedel-Crafts acylation of diphenyl ether with the corresponding acyl chloride and subsequent α-bromination. Prepolymers were synthesized by the condensation of (IIa) and (IIb) with ammonia in N,N-dimethylformamide (DMF), and polymers were prepared by subsequent melt condensation of the prepolymer to produce poly[2,5-(oxydiphenylene)-3,6-(dihexyl)pyrazine] (IIIa), and poly[2,5-(oxydiphenylene)-3,6-(ditetradecyl)pyrazine] (IIIb). Polymer IIIa was thermally (stable at 〉400°C while polymer IIIb was a tacky substance). The inherent viscosity of IIIa produced by 12 hr of melt condensation was 0.30 dl/g in formic acid. Additional heating in excess of 24 hr gave a slightly soluble polymer. The inherent viscosity of IIIb produced by 40 hr of melt condensation was 0.37 dl/g in formic acid.
    Additional Material: 2 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...