Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 1975-1979  (1)
  • 1950-1954
  • Polymer and Materials Science  (1)
Materialart
Erscheinungszeitraum
Jahr
  • 1
    Digitale Medien
    Digitale Medien
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 10 (1976), S. 695-731 
    ISSN: 0021-9304
    Schlagwort(e): Chemistry ; Polymer and Materials Science
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Medizin , Technik allgemein
    Notizen: The biocompatibility of nitinol alloy as a potential implant material was investigated through in vivo studies on beagles. A high-purity alloy was fabricated into prototype bone plates and implanted into the femurs of beagles. Commercial cobalt-chromium (Co—Cr) alloy bone plates served as reference controls, and additional control data were obtained from beagles subjected to “sham” operations.The bone plates were removed from the animals and examined after exposures of 3, 6, 12, and 17 months. There was no evidence of either localized or of general corrosion on the surfaces of the bone plates and screws. Gross clinical, radiological, and morphological observations of the tissue at the implantation sites during the autopsies uncovered no signs of adverse tissue reactions resulting from the implants. Histological analyses were performed on samples of muscle and bone adjacent to the implantation sites, and of tissues removed from such organs as the liver, spleen, brain, and kidneys. No significant differences were noted between samples taken from controls and those taken from dogs exposed to the implants. Neutron activation analyses were carried out on suitable samples. The analysis data suggest that there is no metallic contamination in the organs due to the implants; however, there does appear to be some chromium contamination from the Co—Cr alloy implants in the adjacent bone.On the basis of the totality of the data, it is concluded that nitinol alloy is sufficiently compatible with dog tissue to warrant further investigation of its potential as a biomaterial.
    Zusätzliches Material: 17 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...