Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • B16 melanoma  (2)
  • Polymer and Materials Science  (1)
  • 1
    ISSN: 1573-7276
    Keywords: B16 melanoma ; c-met ; HGF/SF ; liver metastasis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Metastasis to the liver is a frequent event in clinical oncology, the molecular mechanisms of which are not fully understood. We have recently reported a consistent overexpression of c-met in B16 melanoma cells selected in vivo for enhanced liver metastatic ability. In this study we address the question as to whether constitutive activation of c-met is a necessary and sufficient condition for enhanced liver colonization B16 melanoma cells. Different levels of c-met expression and/or activation in B16 cells were achieved subcloning, or by c-DNA transfection with either HGF/SF or the oncogenic form of c-met (tpr-met). Metastatic ability of the different populations was then evaluated in vivo by the lung colonization (experimental metastasis) assay. Results indicate that c-met (but not tpr-met) activation in B16 melanoma cells may increase their liver colonizing potential, probably by enhancing motility and invasion in response paracrine interactions with its ligand. C-met expres sion per se, however, is not able to change the organ specificity of the cells. C-met activation appears instead to be required at later stages of liver colonization by B16 melanoma cells, in order to enhance their site-specific metastatic ability. © Rapid Science 1998
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 34 (1994), S. 933-940 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A matching algorithm using surface complementarity between receptor and ligand protein molecules is outlined. The molecular surfaces are represented by “critical points,” describing holes and knobs. Holes (maxima of a shape function) are matched with knobs (minima). This simple and appealing surface representation has been previously described by Connolly [(1986) Biopolymers, Vol. 25, pp. 1229-1247]. However, attempts to implement this description in a docking scheme have been unsuccessful (e.g., Connolly, ibid.). In order to decrease the combinatorial complexity, and to make the execution time affordable, four critical hole/knob point matches were sought. This approach failed since some bound interfaces are relatively flat and do not possess four critical point matches. On the other hand, matchings of fewer critical points require a very time-consuming, full conformational (grid) space search [Wang, (1991) Journal of Computational Chemistry, Vol. 12, pp. 746-750]. Here we show that despite the initial failure of this approach, with a simple and straightforward modification in the matching algorithm, this surface representation works well. Out of the 16 protein-protein complexes we have tried, 15 were successfully docked, including two immunoglobulins. The entire molecular surfaces were considered, with absolutely no additional information regarding the binding sites. The whole process is completely automated, with no manual intervention, either in the input atomic coordinate data, or in the matching. We have been able to reach this level of performance with the hole/knob surface description by using pairs of critical points along with their surface normals in the calculation of the transformation matrix. The success of this approach suggests that future docking methods should use geometric docking as the first screening filter. As a geometrically based docking methodology predicts correct, along with incorrect, receptor-ligand bound conformations, all solutions need to undergo energy screening to differentiate between them. © 1994 John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 264-276 
    ISSN: 0730-2312
    Keywords: HGF/SF ; MSH ; c-met ; tyrosinase ; B16 melanoma ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Reiterated selection in vivo of B16 murine melanoma cells for enhanced liver metastatic ability yielded a cell line (B16-LS9) dramatically overexpressing a constitutively active hepatocyte growth factor/scatter factor (HGF/SF) receptor, the product of the c-met proto-oncogene. Most likely because of their overexpressing c-met, B16-LS9 cells appear to be more responsive than parental B16-F1 cells to HGF stimulation, in terms of motility, invasion, and growth. They are also more pigmented, and express higher levels of tyrosinase as compared to parental B16-F1 cells. Therefore, we set out to explore whether HGF/SF and the liver might influence the differentiation state of B16 cells. We found that HGF/SF and MSH, two factors which reportedly have a strong influence on the phenotype and the malignant behavior of melanoma cells, may act at different levels, and with opposite results, on the regulation of gene expression. In fact, while MSH induces, at the transcriptional level, an increase in the production of both c-met and tyrosinase, HGF/SF, in contrast, promotes a decrease in the expression of both c-met and tyrosinase, however at a posttranscriptional level. These two opposite effects can counter-balance each other, when the cells are treated with both factors at the same time, apparently through a mechanism involving MAP kinase activation. The effects were, however, additive when morphological changes were considered. Most intriguingly, we also describe a very strong downregulatory activity, limited to tyrosinase expression, by hepatocytes in coculture with B16 cells. This activity, also at the posttranscriptional level, is much stronger than that exerted by HGF/SF, and appears to be due to a labile soluble factor produced by the hepatocytes. J. Cell. Biochem. 71:264-276, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...