Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (41)
  • Polymer and Materials Science  (39)
  • Ion channel  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    European biophysics journal 21 (1992), S. 117-128 
    ISSN: 1432-1017
    Keywords: Ion channel ; Peptaibol ; Channel forming peptide ; Planar bilayer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract The zervamicins (Zrv) are a family of 16 residue peptaibol channel formers, related to the 20 residue peptaibol alamethicin (Alm), but containing a higher proportion of polar sidechains. Zrv-1113 forms multi-level channels in planar lipid (diphytanoyl phosphatidylcholine) bilayers in response to cis positive voltages. Analysis of the voltage and concentration dependence of macroscopic conductances induced by Zrv-IIB suggests that, on average, channels contain ca. 13 peptide monomers. Analysis of single channel conductance levels suggests a similar value. The pattern of successive conductance levels is consistent with a modified helix bundle model in which the higher order bundle are distorted within the plane of the bilayer towards a “torpedo” shaped cross-section. The kinetics of intro-burst switching between adjacent conductance levels are shown to be approximately an order of magnitude faster for Zrv-IIB than for Alm. The channel forming properties of the related naturally occurring peptaibols, Zrv-Leu and Zrv-IC, have also been demonstrated, as have those of the synthetic apolar analogue Zrv-Al-16. The experimental studies on channel formation are combined with the known crystallographic structures of Zrv-Al-16 and Zrv-Leu to develop a molecular model of Zrv-II3 channels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    European biophysics journal 21 (1993), S. 369-383 
    ISSN: 1432-1017
    Keywords: Ion channel ; Peptaibol ; Molecular modelling ; Channel-forming peptide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract Zervamicin-IIB (Zrv-IIB) is a 16 residue peptaibol which forms voltage-activated, multiple conductance level channels in planar lipid bilayers. A molecular model of Zrv-IIB channels is presented. The structure of monomerc Zrv-II3 is based upon the crystal structure of Zervamicin-Leu. The helical backbone is kinked by a hydroxyproline residue at position 10. Zrv-IIB channels are modelled as helix bundles of from 4 to 8 parallel helices surrounding a central pore. The monomers are packed with their C-terminal helical segments in close contact, and the bundles are stabilized by hydrogen bonds between glutamine 11 and hydroxyproline 10 of adjacent helices. Interaction energy profiles for movement of three different probes species (K+, Cl− and water) through the central pore are analyzed. The conformations of: (a) the sidechain of glutamine 3; (b) the hydroxyl group of hydroxyproline 10; and (c) the C-terminal hydroxyl group are “optimized” in order to maximize favourable interactions between the channel and the probes, resulting in favourable interaction energy profiles for all three. This suggests that conformational flexibility of polar sidechains enables the channel lining to mimic an aqueous environment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The CD spectra of the peptides Boc-X-(Aib-X)n-OMe (n = 1, 2, 3) and Boc-(Aib-X)5-OMe, where X = L-Ala or L-Val have been examined in several solvents. The X = Ala and Val peptides behave similarly in all solvents, suggesting that the Aib residues dominate the folding preferences of these peptides. The decapeptides adopt helical conformations in methanol and trifluoroethanol, with characteristic negative CD bands at 222 and 205 nm. In the heptapeptides, similar spectra with reduced intensities are observed. Comparison with nmr studies suggest that estimates of helical content in oligopeptides by CD methods may lead to erroneous conclusions. The pentapeptides yield solvent-dependent spectra indicative of conformational perturbations. Peptide association in dioxane results in an unusual spectrum with a single negative band at 210 nm for the decapeptides. Disaggregation is induced by the addition of methanol or water to dioxane solutions. Aggregation of the heptapeptides is less pronounced in dioxane, suggesting that a critical helix length may be necessary to promote association stabilized by helix dipole-dipole interactions.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 24 (1985), S. 2041-2043 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The decapeptides Boc-Aib-L-Val-Aib-Aib-(L-Val)3-Aib-L-Val-Aib-OMe and Boc-Aib-L-Leu-Aib-Aib-(L-Leu)3-Aib-L-Leu-Aib-OMe have been studied in CDCl3 and (CD3)2SO solutions by 270-MHz1 H-nmr. In CDCl3, the presence of eight intramolecularly hydrogen-bonded NH groups has been established, consistent with a 310-helical conformation, for both decapeptides. In (CD3)2SO, only seven solvent-shielded NH groups are observed, supporting either an α-helical conformation or a partially unfolded 310-helix. Ir studies provided supporting evidence for intramolecularly hydrogen-bonded structures in CHCl3, while CD studies suggest helical conformation in both decapeptides in various solvents. CD studies also support helical folding in the C-terminal hexapeptides. The central triplet of L-amino acids appears to destabilize 310-helical conformations in polar solvents like (CD3)2SO.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 28 (1989), S. 773-781 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A second example of insertion of a water molecule into the helical backbone of an apolar peptide is presented here and compared to a similar occurrence in a longer peptide with the same type of sequence of residues, i.e., Boc-Aib-(Ala-Leu-Aib)3-OMe. The backbone of the title compound assumes an approximate 310-helical form with three 4 → 1 hydrogen bonds. In the place of a fourth 4 → 1 hydrogen bond, a water molecule is inserted between O(1) and N(4), and acts as a bridge by forming hydrogen bonds N(4) … W(1) (2.95 Å) and W(1) … O(1) (2.81 Å). The water molecule participates in a third hydrogen bond with a neighboring peptide molecule, W(1) … O(4) (2.91 Å). The insertion of the water molecule causes the apolar peptide to mimic an amphiphilic helix. Crystals grown from ethyl acetate/petroleum ether (reported here) or from methanol/water solution are in space group P212121 with a = 12.024(4) Å, b = 15.714(6) Å, c = 21.411(7) Å, Z = 4 and dcalc = 1.124 g/cm3 for C32H58N6O9 · H2O. The overall agreement factor R is 6.3% for 2707 reflections observed with intensities 〉 3σ(F) and the resolution is 0.90 Å.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The peptide Boc-Val-Val-Aib-Pro-Val-Val-Val-OMe has been synthesized to investigate the effect of introduction of a strong β-turn promoting guest segment into an oligopeptide with a tendency to form extended structures. 1H-nmr studies in solution using analysis of NH group solvent accessibility and nuclear Overhauser effects suggest an appreciable solvent dependence of conformations. In chloroform a 310-helical structure is favored while in dimethylsulfoxide an Aib-Pro β-turn with extended arms on either side is suggested. In the crystal, the backbone forms a somewhat distorted 310-helix despite the presence of a Pro residue in the middle. Among the four possible intrahelical hydrogen bonds three are of the 4 → 1 type and one 5 → 1. Head-to-tail NH⃛O=C hydrogen bonds link the helical molecules into continuous columns. The space group is P212121 with a = 11.320(2), b = 19.889(3), and c = 21.247(3) Å.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The crystal structure of the nonapeptide Boc-D-Phe-Aib-Aib-Aib-Aib-Gly-Leu-Aib-AibOMe (I), which is an analogue of the N-terminal sequence of antiamoebins and emerimicins, establishes a completely 310-helical conformation with seven successive intramolecular 4 → 1 hydrogen bonds. The average, φ, ψ values for residues 1-8 are -59° and -32°, respectively. Crystal parameters are C47H77N9O12, space group P1, a = 10.636(4) Å, b = 11.239(4) Å, c = 12.227(6) Å, α = 101.17(4)°, β = 97.22(4)°, γ = 89.80(3)°, Z = 1, R = 5.95% for 3018 data with |F0| 〉 3α(F), resolution 0.93 Å. The use of the torsion angle κ = C(i - 1)N(i)Cα(i)Cβ(i), where κ = 68° for D-Phe and κ = 164° for L-Leu, confirms the opposite configurations of these residues. The φ, ψ values of -62° and -32° at D-Phe are unusual, since this region is characteristic of residues with L configurations. Peptide I possesses only two chiral residues of opposing configuration. The observed right-handed 310-helical structure suggests that helix sense has probably been determined by the stereo-chemical preferences of the Leu residue. © 1993 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The influence of amino acids with contrasting conformational tendencies on the stereochemistry of oligopeptides has been investigated using an octapeptide Boc-Leu-Aib-Val-Gly-Gly-Leu-Aib-Val-OMe, which contains two helix-promoting Aib residues and a central helix-destabilizing Gly-Gly segment. Single crystal x-ray diffraction studies reveal that a 3 10-helix is formed up to the penultimate Aib residue, at which point there is a helix reversal in the backbone, reminiscent of a C-terminal 6 → I hydrogen bond. The curious feature in the crystal is the solvation of the possible 6 → 1 bond by a CH3OH molecule, where the OH is inserted between O(3) and N(8) and participates in hydrogen bonds with both. The cell parameters are as follows: space group P212121, a = 10.649(4) Å, b = 15.694(5) Å, c = 30.181(8) Å, R = 6.7% for 3427 data (| F0| 〉 3σF) observed to 0.9 Å. Nuclear magnetic resonance studies in CDCl3 using NH group solvent accessibility and nuclear Overhauser effects as probes are consistent with a 3 10-helical conformation. In contrast, in (CD3)2SO, unfolding of the central segment results in a multiple β-turn structure, with β-turn conformations populated at residues 1-2, 3-4, and 6-7. CD studies in methanol-2,2,2-trifluoroethanol (TFE) mixtures also provide evidence for a solvent-dependent structural transition. Helical conformations are populated in TFE, while type II β-turn structures are favored in methanol. © 1996 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The peptide Boc-Gly-Dpg-Gly-Val-Ala-Leu-Aib-Val-Ala-Leu-OMe has been designed to examine the structural consequences of placing a short segment with a low helix propensity at the amino terminus of a helical heptapeptide module. The Gly-Dpg-Gly segment is a potential connecting element in the synthetic construction of a helix-linker-helix motif. Crystal parameters for the peptide are P21, a = 8.651(3) Å, b = 46.826(13) Å, c = 16.245 Å, β = 90.13(3)*, Z = 4; 2 independent molecules/asymmetric unit. The structure reveals almost identical conformations for the two independent molecules. The backbone is completely helical for residues 2-9, with one 4 → 1 hydrogen bond and six 5 → 1 hydrogen bonds. The α,α-di-n-propylglycine residue adopts a helical conformation. Gly(1) adopts an extended conformation resulting in a nonhelical N-terminus, with the Boc group swinging away from the helix. The lateral association of helices in the b axis direction is unusual in that the helix axes are directed up or down (parallel or antiparallel) by pairs: ↓↓↑↑↓↓, etc. © 1996 John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...