Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Polymer and Materials Science  (2)
Material
Years
Keywords
  • 1
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The preceding paper develops the theory for the interpretation of fluorescence photobleaching recovery (FPR) measurements of multiple binding of a ligand to a multivalent substrate molecule. Based on a reasonable assumption about the mechanism of the photobleaching process, this analysis shows that the observed behavior of a multivalent system should be practically identical to that of a univalent binding system. This is in contrast to the expected and observed behavior of fluorescence correlation spectroscopy (FCS) measurments. Experimental FPR measurements of multivalent binding of ethidium bromide to DNA confirm these conclusions. The FCS and FPR measurements also reveal an apparently enhanced diffusion of ethidium at high DNA concentration. This enhancement might result from direct transfer of ethidium among DNA molecules.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 22 (1983), S. 1919-1948 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Fluorescence correlation spectroscopy (FCS) and fluorescence photobleaching recovery (FPR) are two methods that may be used to measure diffusion and chemical reaction kinetics in small, labile systems such as biological cells. These methods are here applied to systems in which a fluorescent ligand can bind to a polyvalent substrate molecule in a multistep reaction sequence. The analytical theory for both FCS and FPR is extended to allow analysis of these kinds of systems. Experimental measurements of the binding of ethidium bromide to DNA by FCS confirm the theoretical analysis. (FPR measurements on the same system are reported in the accompanying paper.) The analysis shows that FCS and FPR perceive multivalent binding reactions differently. This difference results from the selective effect of the photobleaching process in the chemical reaction system. The development and results we report could have useful applications to a wide range of biopolymeric binding and assembly process.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...