Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 21 (1983), S. 3453-3477 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Pyrolysis of polyacetylene is marked by high yields of proton-enriched products methane, ethane, ethylene, propane, polypylene, butadiene, cyclopentadiene, 1,3-pentadiene, and toluene in total amounts exceeding benzene. The activation energies for their formation are low. Polyacetylene doped with AsF5 and iodine produced these products in even higher yields of two to 17 times of undoped polymers. The dominant mechanism is thought to be random-chain scission followed by electron-proton exchange reactions. Polymethylacetylene is thermally less stable than polyacetylene. Pyrolysis gave mesitylene as the expected main product. However, as in the case of polyacetylene, large amounts of proton-enriched products were formed with moderate activation energies. (The yields of methane, propylene, and propane are nearly the same in the pyrolysis of polymethylacetylene as compared to that of polyacetylene at 923°K referenced to mesitylene and benzene, respectively.) By analogy, mechanisms involving both electron-proton and electron-methyl exchange reactions were proposed to account for the formation of all the pyrolyzates of polymethylacetylene. These reactions, not observed in the pyrolysis of polypropylene and polyisoprene, are attributable to the conjugated backbone permitting facile migrations of electrons, protons, and methyl groups.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 33 (1987), S. 1315-1341 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: This paper is concerned with applications of a kinetic-diffusion model which accounts for the gel effect and glass effect for free radical polymerizations under nonisothermal conditions. Bulk polymerizations of styrene and unsaturated polyester in the batch casting process were investigated both experimentally and theoretically. A differential scanning calorimeter (DSC) and a Fourier transform infrared spectrometer (FTIR) were employed to elucidate incomplete reactions resulting from glass transition and dead-ending phenomena and to provide kinetic information for modelling. Temperature, conversion, and cumulative molecular weight profiles were simulated under several wall temperature programs. Predictions of ultimate cumulative molecular weights across the reactor, when compared with experimental results measured by gel permeation chromatography (GPC), affirmed that the molecular weight variation due to the radial temperature gradient could be alleviated by manipulating the wall temperature.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...