Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: This paper presents the results of a stereochemical analysis of local interactions in unfolded protein chains (sterical repulsions, hydrogen, and hydrophobic bonds, etc.) by means of space-filling modeles. On the basis of this analysis, an evaluation is made of thermodynamic parameters controlling the building-in of all the 20 natural amino acid residues in all the physically possible position of local secondary structures (α-helices, including α-helices with short fragments of helices 310 at the C-terminus; β-bends of different types, helices 310, and their combinations) as well as thermodynamic parameters of separate hydrogen bonds of polar side groups with the neighbor peptide groups (“local contacts”). The accuracy of the obtained results is discussed.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 22 (1983), S. 15-25 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A molecular theory of protein secondary structure is presented that takes account of both local interactions inside each chain region and long-range interactions between different regions, incorporating all these interactions in a single Ising-like model. Local interactions are evaluated from the stereochemical theory describing the relative stabilities of α- and β-structures for different residues in synthetic polypeptides, while long-range effects are approximated by the interaction of each chain region with the averaged hydrophobic template. Based on this theory, an algorithm of protein secondary structure prediction is proposed and examples are given of “blind” predictions made before the x-ray structural data became available.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Constants of the helix-coil transition for all natural amino acid residues are evaluated on the basis of thermodynamic parameters obtained in paper I of this series. The specific effects at the termini of the helices are also considered as well as the parameters controlling the formation of β-bends in the unfolded protein chain. Evaluated s constants of the helix-coil transition agree with the experimental data on helix-coil transitions of synthetic polypeptides in water. Only a very qualitative correlation exists between s constants (both experimental and theoretical) and the occurrence of corresponding residues in internal turns of α-helices in globular proteins: residues with s 〉 1 occur in helices as a rule more often than residues with s 〈 1. At the same time a direct correlation is demonstrated between theoretical parameters of residue incorporation into α-helical termini and β-bends in an unfolded polypeptide chain and the occurrence of residues in corresponding positions of the globular protein secondary structures.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A mathematical model is developed adequately describing an unfolded polypeptide chain without long-range interactions in which fluctuating hydrogen-bonded α-helices, β-bends, fragments of helices 310, and other local structures are formed. The obtained model is a modification of a one-dimensional Ising model for a heteropolymer and allows one to determine the probability of formation of different secondary structures in various parts of a polypeptide chain, provided the whole set of structural thermodynamic parameters exists.
    Additional Material: 1 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...