Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Materialwissenschaft und Werkstofftechnik 24 (1993), S. 378-383 
    ISSN: 0933-5137
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Description / Table of Contents: Einfluß eines NH3—O2-Gasgemischs auf die Oxidschutzschicht von hoch chromlegiertem StahlIn einer reinen Ammoniakatmosphäre werden hoch chromlegierte Stähle bei den üblichen Temperaturen kaum nitriert. Das ändert sich bei Zugabe von kleinen Mengen Sauerstoff zum Ammoniak (Oxinitrieratmosphäre). Dadurch wird die schätzende Oxidschicht des Metalls reduziert. Dieses paradoxe Verhalten ist bis jetzt noch nicht verstanden. Um das reduzierende Verhalten eines solchen Gasgemisches zu erklären, wird angenommen, daß Stickoxid (NO), das bei einer Reaktion zwischen NH3 und O2 entsteht, eine Rolle spielt. Tatsächlich kann beim Nitrieren mit NH3 + O2 im abfließenden Gas NO nachgewiesen werden. Um den Einfluß von NO zu prüfen, wurden Stahlproben (Typ 304 austenitischer Stahl) in NH3—NO-Gasgemischen bei erhöhten Temperaturen nitriert. Dabei wurde ein reduzierender Effekt von NO auf die Oxidschicht des Stahls gefunden. Weiterhin ergab das Nitrieren in NH3 + NO Gemisch sehr hohe Oberflächenhärten (HV 1300-1700), im Gegensatz zu oxinitrierten Proben, die vergleichsweise niedrige Oberflächenhärten aufweisen. Es ist zu erwarten, daß die Behandlung in einem NH3 + NO-Gasgemisch eine neue Nitriermethode für Stähle ergibt.
    Notes: High Cr steels are hardly nitrided in on ammonia gas atmosphere at usual nitriding temperatures, whereas they are easily nitrided when a small amount of oxygen is added to the ammonia atmosphere (called an oxynitriding atmosphere). Hence the protective oxide film of the steels is reduced by adding oxygen to the ammonia. This paradoxical phenomenon has not been explained. With respect to the reducing behavior of the NH3—O2 gas mixture on the oxide film, the role of nitrogen oxide (NO) formed by a reaction between the NH3 and the O2 was noted. In the oxynitriding operation, the NO was detected in the exhaust gases. Based on this fact, Type 304 stainless steel was nitrided in NH3—NO gas mixtures at elevated temperatures, and the action of the NO in NH3 as a reductant for the oxide film of the steel was discovered. Furthermore, nitriding in the NH3—NO gas mixture resulted in a very high surface hardness (as high as Hv 1300-1700) for the steel. On the other hand, the oxynitrided surface was always of lower hardness than the case-hardened layers formed in the steel. It is believed that NH3—NO atmosphere nitriding will become a new nitriding method for steels.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 12 (1968), S. 2639-2647 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The radiation-induced polymerization of ethylene was carried out by use of a benchscale plant with a flow-type reactor of 1 liter capacity under the following conditions: pressure, 200-400 kg/cm2; temperature, 30-90°C; irradiation intensity, 3.8 × 105 rad/hr; and ethylene flow rate, 300-3000 nl/hr. The molecular weight of polymer formed was shown to decrease with increasing reaction temperature and to increase with increasing pressure. When the ethylene flow rate increases, the molecular weight decreases in the polymerization at 30-60°C, but it does not change in the polymerization at 75-90°C. Methyl group content, which is a measure of short-chain branching of the polymer, increases with increasing reaction temperature, i.e., ca. 1 CH3/1000 CH2 at 30°C and ca. 9 CH3/1000 CH2 at 90°C. Methyl content is independent of the ethylene flow rate. The changes in the melt index of polymer with reaction conditions corresponds to the change of the molecular weight. The density, crystallinity, and melting point of polymer decrease with the reaction temperature as the short-chain branching increases, and they are almost independent of ethylene flow rate and pressure.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...