Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Polymers for Advanced Technologies 1 (1990), S. 19-25 
    ISSN: 1042-7147
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: When a water-swollen polyelectrolyte gel is interposed between a pair of electrodes and DC current is applied, the gel undergoes electro-chemomechanical contraction and concomitant water exudation both in water and in the air. In order to clarify the mechanism of the phenomenon, contractile experiments were carried out under various conditions and led to the conclusion that the contraction is essentially associated with electrically driven movement of hydrated micro- and macroions in the gel (electrokinetic process).
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 55 (1995), S. 343-349 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The shifts in membrane potential, caused by the injection of some amino acids into a permeation cell, were measured using immoblized γ-globulin membranes. The shifts in membrane potential were observed to be positive or negative when the isoelectric point of each amino acid injected into the cell was less or higher than 6.0. The potential response caused by the injection of each amino acid shows an individual and characteristic curve depending on the amino acid, and the difference in potential curves between D-aspartic acid and L-aspartic acid is significantly observed in the immobilized γ-globulin membranes. The t3/4 value was found to increase in the following order: lysine = glutamic acid 〈arginine 〈 D-aspartic acid = asparagine 〈 L-aspartic acid 〈 histidine 〈 alanine, where t3/4 indicates the time at which 75% of the shifts in membrane potential has been observed. The modified membrane potential theory provides satisfactory explanations for the membrane potential obtained experimentally before and after the injection of L-alanine, and the theoretical shifts can explain the experimental shifts in membrane potential due to the injection of L-alanine into the cell. © 1995 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 35 (1997), S. 1291-1294 
    ISSN: 0887-6266
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: No abstract.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 27 (1989), S. 1043-1056 
    ISSN: 0887-6266
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The structure of soluble polyelectrolyte complexes composed of heparin (Hep) and partially aminoacetalized poly(vinyl alcohol) (PVAA) in aqueous solution was investigated by light scattering. The pH was fixed at 3.2 while the ionic strength and mixing ratio were varied. At high ionic strength (0.5), polyelectrolyte complexes were not formed owing to the screening effect of simple salts on polyion charges. At low ionic strength (0.005), polyelectrolyte complexes formed were stable and dispersed when either the polycation or the polyanion was in great excess, whereas the complexes became unstable and coagulated when the concentrations of polycation and polyanion approached each other. At intermediate ionic strength (0.1), when PVAA was in excess, complex formation was similar to that at low ionic strength (0.005); but with an excess of Hep, polyelectrolyte complexes with similar structure (i.e., roughly spherical with average diameters about 2,700 Å) were formed over a wide range of mixing ratio. This observation is of interest in connection with the physiological activity of Hep in vivo.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 25 (1987), S. 1407-1418 
    ISSN: 0887-6266
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The effect of counterions on the solution properties of two types of ionomers, one based on sulfonated polystyrene and the other based on styrene-methacrylic acid copolymer, was studied by viscosity and light scattering measurements. It was found that the order of counterion binding of ionomers in a polar solvent and the order of aggregation of ionomers in a low-polarity solvent were the same for the same ionomer system. However, the order for the sulfonated ionomer was Li 〈 Na 〈 K 〈 Cs, whereas that for the carboxylated ionomer was the opposite. This can be explained by a difference in desolvation during anion-cation interaction and by considering site-binding in a polar solvent and the association of ion pairs in a low-polarity solvent. These findings for ionomer systems are parallel to the association behavior of small ions in water, cation affinity in crosslinked resins, and counterion binding of polyelectrolytes in water.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1235-1245 
    ISSN: 0887-6266
    Keywords: PMMA ; mechanical properties ; ionomer precursor polymer ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Rigid-rigid blends made of ionomer and ionomer precursor polymer, based on poly(methyl methacrylate) (PMMA), have been investigated. Two series of blends have been prepared for studying mechanical properties. In one series, dynamic mechanical properties were determined over a wide range of temperatures. As the weight fraction of the ionomer was increased, there was a modest increase of modulus at ambient temperature and a very large increase in the rubbery modulus at elevated temperatures above the glass transition temperature of PMMA. In a second series of tests, tensile stress-strain measurements, made at an ambient temperature, were carried out over a wide range of blend compositions. For all blends tested, the mechanical properties exhibited a synergistic enhancement, i.e., average values of modulus, strength and fracture energy were all higher than expected based on the rule of mixtures. Measurements of fracture toughness also exhibited synergy, with a maximum value, higher than the value of either blend component, being attained in blends containing about 30 wt % of the PMMA ionomer. These results are interpreted in terms of a higher resistance to fracture of the more chain-entangled ionomer phase and good interfacial adhesion between the two components of the blend. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1235-1245, 1998
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...