Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 32 (1992), S. 1407-1415 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The peptide YKGTMDSG (Tyr-Lys-Gly-Thr-Met-Asp-Ser-Gly) represents an important antigenic determinant from the glycoprotein G2 of the pathogenic Rift Valley fever virus. By preparing a series of single-residue substitution peptides, the importance to antigenicity of individual residues within this octapeptide has been determined. Here, we investigated a simple and rapid computational analysis to test for correlations between the observed antigenicity of the substitution analogue peptides and the calculated conformational preferences in local regions of the peptides. Conformational energy analyses were carried out on all dipeptide combinations represented in the wild-type octapeptide and in the singleresidue substitution analogue peptides. Conformational similarities and differences between wild-type and substitution dipeptide pairs were determined. The results of these computational analyses were then compared with the data on the relative antigenicity of the wild-type octapeptide and the substitution analogues. This comparison revealed a positive correlation. Substitution peptides showing changes in antigenicity possessed significant changes in the calculated backbone conformation relative to wild type in the dipeptides encompassing the residue substitution. Substitution peptides showing no change in antigenicity similarly showed no significant changes in dipeptide conformation. The potential utility of dipeptide conformational energy analyses and this preliminary structure-activity correlation are discussed. © 1992 John Wiley & Sons, Inc.
    Additional Material: 8 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 10 (1971), S. 2083-2094 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The mechanism of the unique and specific association of a given amino acid to its t-RNA is investigated by theoretical methods. Several possible schemes are proposed to explain specificity. The physical forces which act within these mechanisms are illustrated by the computer simulation of probable interactions between glycine and nucleotide bases and base pairs. It is demonstrated that glycine has direct and selective affinities for the nucleotide bases and that these interactions are principally determined by the polar groups. Energies have been calculated for the interaction of glycine with several base pairs. From these, the possibility that specificity arises through direct complexing of an amino acid with its anticodon is evaluated.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...